Newer
Older
author: Environmental Cheminformatics Group, LCSB, University of Luxembourg
title: "`r paste('Shinyscreen', packageVersion('shinyscreen'))`"
```{r, context='setup', include='false'}
def_datafiles <- shinyscreen:::dtable(File=character(0),
tag=character(0))
def_datatab <- shinyscreen:::dtable("tag"=factor(),
"adduct"=factor(levels=shinyscreen:::DISP_ADDUCTS),
"set"=factor())
def_summ_subset <- shinyscreen:::dtable("QA Column"=shinyscreen:::QA_FLAGS,
"Select"=factor("il irrilevante",levels=c("il irrilevante",
"il buono",
"il cattivo")))
## RMassBank masks shiny::validate. Unmask it.
validate <- shiny::validate
## def_state$input$tab$tags <- def_datatab
compl_sets <- eventReactive(rv_state$input$tab$setid,
rv_state$input$tab$setid[,unique(set)])
## Reactive values to support some of the UI elements.
## rv_ui <- reactiveValues(datatab=def_tags)
## Update with data-files.
rv_dfiles <- reactiveVal(def_datafiles)
## Data-file table when loading.
rv_datatab <- reactiveVal(def_datatab)
# Configuration {.tabset}
## Inputs
<details>
<summary>Specify the project directory</summary>
This is where the output files and the state of the analysis will be
saved.
</details>
```{r, echo=FALSE}
actionButton(inputId = "project_b",
label= "Project")
```
Current project directory is `r textOutput("project", inline=T)`
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
<details><summary>Load the compound list(s)</summary>
A compound list is composed of entries describing compounds. This
description is used to search for its spectrum in the data file. The
list is a table in the ***CSV*** format and contains these columns,
* ***ID*** : required column, must be filled; this is a user-defined
ID, uniquely associated with a compound
* ***Name*** : this column can be left blank; if not, it should contain the
names of the compounds
* ***SMILES*** : a _SMILES_ string, describing the structure of the
compound; this entry can be left empty only if one of either
***Formula***, or ***mz*** entries are not
* ***Formula*** : a chemical formula of a compound; this field can be
empty only if one of either ***SMILES***, or ***mz*** entries are
not
* ***mz*** : mass of the ionised compound; this field can be left
empty only if one of either ***SMILES***, or ***Formula*** is not
* ***CAS*** : the CAS number of the compound; it can be left empty
* ***RT*** : retention time of the MS1 peak in minutes, if known; can
be left empty.
Only ***ID*** and one of ***SMILES***, ***Formula*** or ***mz*** must
be filled. When structure, or a formula of a compound is known, it is
also possible to look for various adducts in the sample. Of course,
scanning for completely unknown compounds is also supported by the
***mz*** column. In this case, ***mz*** is the mass of the ion.
It is strongly recommended to quote SMILES, names and formulas in the
CSV file used with Shinyscreen.
</details>
```{r, echo=FALSE}
actionButton(inputId = "comp_list_b",
label= "Compound list(s)")
```
<details><summary>Load compound set list (_setid_ table)</summary>
The compound lists can contain more entries than is necessary. Using
the _setid_ lists, it is possible to create _compound sets_ which
contain only those compounds that will actually be searched for in the
data files. A _setid table_ is a _CSV_ containing at least two
columns,
* ***ID*** : the ID entry from the compound list
* ***set*** : an user-defined set name.
</details>
```{r, echo=FALSE}
actionButton(inputId = "setid_b",
label= "Load the setid table")
```
`r htmlOutput("setids", inline=T)`
## Data files
<details><summary>Load data files</summary>
Shinyscreen currently supports only the **mzML** file format. After
loading the files, set file tags in the file table (column
**tag**). Additionally, specify a set of compounds that is supposed
to be extracted from the file using the **set** column. Finally,
specify the **adduct** in the adduct column. In case of compounds
with unknown structure and formula, the adduct is ignored for obvious
reasons.
</details>
```{r, echo=FALSE}
actionButton(inputId = "datafiles_b",
label= "Load data files.")
```
<details><summary>Assign tags to data files.</summary>
Each tag designates an unique file. Use the table below to assign
tags.
</details>
```{r, echo=FALSE}
rhandsontable::rHandsontableOutput("datafiles")
```
<details><summary>Assign sets to tags.</summary>
For each tag, assign a set and an adduct (if the structure information
exists, otherwise _adduct_ column is ignored).
</details>
```{r, echo=F}
rhandsontable::rHandsontableOutput("datatab")
```
## Extraction
### Spectra extraction based settings
Extract all entries matching the target mass within this error in the
precursor table.
</details>
```{r, echo=F}
shinyscreen::mz_input(input_mz = "ms1_coarse",
input_unit = "ms1_coarse_unit",
def_mz = def_state$conf$tolerance[["ms1 coarse"]],
def_unit = "Da")
The precursor table masses can be of lower accuracy. Once there is a
match within the coarse error, it can be further checked versus the
fine error bounds directly in the mass spectrum.
</details>
```{r, echo=F}
shinyscreen::mz_input(input_mz = "ms1_fine",
input_unit = "ms1_fine_unit",
def_mz = def_state$conf$tolerance[["ms1 fine"]],
def_unit = "ppm")
```
The mz interval over which the intensities are aggregated to generate
a chromatogram.
</details>
```{r, echo=F}
shinyscreen::mz_input(input_mz = "ms1_eic",
input_unit = "ms1_eic_unit",
def_mz = def_state$conf$tolerance[["eic"]],
def_unit = "Da")
```
If the expected retention time has been specified for the compound,
then search for the MS1 signature inside the window defined by this
range.
</details>
```{r, echo=F}
shinyscreen::rt_input(input_rt = "ms1_rt_win",
input_unit = "ms1_rt_win_unit",
def_rt = def_state$conf$tolerance[["rt"]],
def_unit = "min")
```
## Prescreening
Ignore MS1 signal below the threshold.
</details>
```{r, echo=F}
numericInput(inputId = "ms1_int_thresh",
label = NULL,
value = def_state$conf$prescreen$ms1_int_thresh)
```
Ignore MS2 signal below the threshold.
</details>
```{r, echo=F}
numericInput(inputId = "ms2_int_thresh",
label = NULL,
value = def_state$conf$prescreen$ms2_int_thresh)
```
MS1 signal-to-noise ratio.
```{r, echo=F}
numericInput(inputId = "s2n",
label = NULL,
value = def_state$conf$prescreen$s2n)
```
Look for associated MS2 spectrum within this window around the MS1
peak.
</details>
```{r, echo=F}
shinyscreen::rt_input(input_rt = "ret_time_shift_tol",
input_unit = "ret_time_shift_tol_unit",
def_rt = def_state$conf$prescreen[["ret_time_shift_tol"]],
<div style= "display: flex; vertical-align:top; ">
Filter entries in the summary table according to the QA criteria.
* **qa_pass** : entries that passed all checks
* **qa_ms1_exists** : MS1 intensity is above the MS1 threshold
* **qa_ms2_exists** : those entries for which some MS2 spectra have been found
* **qa_ms1_above_noise** : MS1 is intense enough and above the noise level
* **qa_ms2_good_int** : MS2 intensity is above the MS2 threshold
* **qa_ms2_near** : MS2 spectrum is close enough to the MS1 peak
For those who do not speak Italian (and do not dig the bad Sergio
Leone pun):
* **l'irrelevante** : ignore QA criterion
* **il buono** : entry passed QA
* **il cattivo** : entry failed QA
rhandsontable::rHandsontableOutput("summ_subset")
<details><summary>Ordering by columns</summary>
It is possible to order the summary table using columns (keys):
*`r paste(gsub("^-(.+)","\\1",shinyscreen:::DEF_INDEX_SUMM), collapse = ',')`*.
The sequence of columns in the table below describes the
sequence of ordering steps -- the key in the first row sorts the
entire summary table and subsequent keys break the ties.
</details>
```{r, echo=F}
rhandsontable::rHandsontableOutput("order_summ")
```
</div>
</div>
### Logarithmic axis
```{r, echo=F}
checkboxGroupInput("plot_log",
label=NULL,
choices = c("MS1 EIC","MS2 EIC","MS2 Spectrum"),
selected = character(0))
```
### Global retention time range
```{r, echo=F}
shinyscreen::rt_input(input_rt = "plot_rt_min",
input_unit = "plot_rt_min_unit",
def_rt = NA_real_,
def_unit = "min",
pref = "min:")
shinyscreen::rt_input(input_rt = "plot_rt_max",
input_unit = "plot_rt_max_unit",
def_rt = NA_real_,
def_unit = "min",
pref = "max:")
```
```{r, echo=F}
shiny::textInput(inputId = "rep_aut", label = "Report author", value = def_state$conf$report$author)
shiny::textInput(inputId = "rep_tit", label = "Report title", value = def_state$conf$report$title)
```
# View compound Lists and Sets {.tabset}
## Compound List
```{r, echo=F}
DT::dataTableOutput("comp_table")
```
## Setid Table
```{r, echo=F}
DT::dataTableOutput("setid_table")
```
## Save and Restore from a Config File
Shinyscreen uses _YAML_ config files to initialise the
computation. These operations only save and restore the input
parameters of your computation, _**not**_ your data.
```{r, echo=FALSE}
actionButton(inputId = "conf_file_load_b",
label= "Load project config")
```
```{r, echo=FALSE}
actionButton(inputId = "conf_file_save_b",
label= "Save config")
## Restore the project
To retrieve a previously extracted data, restore the project state
here. It is also possible to load it in a script (the state is saved
in the _RDS_ format).
actionButton(inputId = "state_file_load_b",
label= "Restore project state")
<details><summary>Extract spectra from data files.</summary>
After Shinyscreen is configured, the compound and setid lists loaded, it
is possible to proceed with extracting the data. This is potentially a
time-intensive step, so some patience might be needed.
Once the data is extracted, it will be possible to quality check the
spectra associated with the compounds specified in the _setid_ list,
to subset that data, look at the plots and publish a report.
</details>
```{r, echo=FALSE}
<details><summary>Prescreen extracted spectra.</summary>
After the data extraction is finished, the quality of the retrieved
spectra can be checked using the criteria defined in the
_Prescreening_ tab of the _Configuration_ Section. The resulting
_summary table_ is given below and is based on the prescreening
criteria and filter and ordering setup specified in _Filter and order
the summary table_ configuration subsection.
</details>
</details>
```{r, echo=FALSE}
actionButton(inputId = "presc_b",
label = "Prescreen and filter")
```
```{r, echo=FALSE}
DT::dataTableOutput("summ_table")
```
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
Generate plots.
```{r, echo=F}
uiOutput("plot_b_ctrl")
```
<div style="display: flex; ">
<div>
```{r, echo=F}
uiOutput("plot_set_b_ctrl")
## selectInput(inputId = "plot_set_b",
## label = "Select set",
## choices = c("uninitialised"=0))
```
</div>
<div style="vertical-align: bottom; ">
```{r, echo=F}
uiOutput("plot_id_b_ctrl")
## selectInput(inputId = "plot_id_b",
## label = "Select ID",
## choices = c("uninitialised"=0))
```
</div>
</div>
<div style="display: flex; ">
<div style="vertical-align: bottom; ">
```{r, echo=F}
actionButton(inputId = "plot_next_b",
label = "Previous")
```
</div>
<div style="vertical-align: bottom; ">
```{r, echo=F}
actionButton(inputId = "plot_prev_b",
label = "Next")
```
</div>
</div>
ord_nms <- gsub("^-(.+)","\\1",shinyscreen:::DEF_INDEX_SUMM)
ord_asc <- grepl("^-.+",shinyscreen:::DEF_INDEX_SUMM)
ord_asc <- factor(ifelse(ord_asc, "descending", "ascending"),levels = c("ascending","descending"))
def_ord_summ <- shinyscreen:::dtable("Column Name"=ord_nms,"Direction"=ord_asc)
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
update_gui <- function(in_conf, session) {
upd_unit <- function(entry,inp_val,inp_unit,choices) {
if (isTruthy(entry)) {
cntnt <- strsplit(entry,split = "[[:space:]]+")[[1]]
cntnt <- cntnt[nchar(cntnt) > 0]
if (length(cntnt)!=2) stop("(upd_unit) ","Unable to interpret ", entry)
val <- cntnt[[1]]
unit <- cntnt[[2]]
updateNumericInput(session = session,
inputId = inp_val,
value = as.numeric(val))
updateSelectInput(session = session,
inputId = inp_unit,
selected = unit,
choices = choices)
}
}
upd_num <- function(entry,inp_val) {
if (isTruthy(entry)) {
updateNumericInput(session = session,
inputId = inp_val,
value = as.numeric(entry))
}
}
upd_sel <- function(inputId,selected,choices) {
if (isTruthy(selected)) {
updateSelectInput(session = session,
inputId = inputId,
selected = selected,
choices = choices)
}
}
isolate({
rv_state$conf$project <- in_conf$project
rv_state$conf$data <- in_conf$data
## Lists
rv_state$conf$compounds$lists <- in_conf$compounds$lists
rv_state$conf$compounds$sets <- in_conf$compounds$sets
## Tolerance
upd_unit(in_conf$tolerance[["ms1 fine"]],
"ms1_fine",
"ms1_fine_unit",
choices=c("ppm","Da"))
upd_unit(in_conf$tolerance[["ms1 coarse"]],
"ms1_coarse",
"ms1_coarse_unit",
choices=c("ppm","Da"))
upd_unit(in_conf$tolerance[["eic"]],
"ms1_eic",
"ms1_eic_unit",
choices=c("ppm","Da"))
upd_unit(in_conf$tolerance[["rt"]],
"ms1_rt_win",
"ms1_rt_win_unit",
choices=c("min","s"))
## Prescreen
upd_num(in_conf$prescreen[["ms1_int_thresh"]],
"ms1_int_thresh")
upd_num(in_conf$prescreen[["ms2_int_thresh"]],
"ms2_int_thresh")
upd_num(in_conf$prescreen[["s2n"]],
"s2n")
upd_unit(in_conf$prescreen[["ret_time_shift_tol"]],
"ret_time_shift_tol",
"ret_time_shift_tol_unit",
choices=c("min","s"))
## Files
df <- shinyscreen:::file2tab(in_conf$data)
df[,tag:=as.character(tag),with=T]
rv_dfiles(df[,.(File=Files,tag)])
nms <- colnames(df)
nms <- nms[nms!="Files"]
fdt <- df[,..nms]
rv_datatab(fdt)
## figures
upd_unit(in_conf$figures$rt_min,
"plot_rt_min",
"plot_rt_min_unit",
choices=c("min","s"))
upd_unit(in_conf$figures$rt_max,
"plot_rt_max",
"plot_rt_max_unit",
choices=c("min","s"))
logentry <- in_conf$figures$logaxes
logchoice <- logical(0)
logchoice <- mapply(function(cn,uin) if (cn %in% logentry) uin else NA,
c("ms1_eic_int","ms2_eic_int","ms2_spec_int"),
c("MS1 EIC","MS2 EIC","MS2 Spectrum"),USE.NAMES = F)
logchoice <- logchoice[!is.na(logchoice)]
updateCheckboxGroupInput(session = session,
inputId = "plot_log",
choices = c("MS1 EIC",
"MS2 EIC",
"MS2 Spectrum"),
selected = logchoice)
## Report
if (isTruthy(in_conf$report$author)) updateTextInput(session,"rep_aut",value = in_conf$report$author)
if (isTruthy(in_conf$report$title)) updateTextInput(session,"rep_tit",value = in_conf$report$title)
})
}
```{r, include="false", context='server'}
observeEvent(input$setid_b, {
filters <- matrix(c("CSV files", ".csv",
"All files", "*"),
setids <- tcltk::tk_choose.files(filters=filters)
message("(config) Selected compound sets (setid): ", paste(setids,collapse = ","))
rv_state$conf$compounds$sets <- if (length(setids)>0 && nchar(setids[[1]])>0) setids else "Nothing selected."
})
rf_compound_input_state <- reactive({
sets <- rv_state$conf$compounds$sets
lst <- as.list(rv_state$conf$compounds$lists)
validate(need(length(lst)>0,
message = "Load the compound lists(s) first."))
message = "Load the setid table first."))
isolate({
state <- rev2list(rv_state)
m <- load_compound_input(state)
## Side effect! This is because my pipeline logic does not
## work nicely with reactive stuff.
rv_state$input$tab$cmpds <- list2rev(m$input$tab$cmpds)
rv_state$input$tab$setid <- m$input$tab$setid
m
state <- rev2list(rv_state)
dir.create(state$conf$project,showWarnings = F)
state
})
rf_conf_state <- reactive({
state <- rf_conf_proj()
## mzml1 <- rf_get_inp_datatab()
## mzml1[,`:=`(tag=as.character(tag),
## set=as.character(set),
## adduct=as.character(adduct))]
## mzml2 <- rf_get_inp_datafiles()
## mzml <- mzml1[mzml2,on="tag"]
ftab <- get_fn_ftab(state)
state$conf$data <- ftab
state$conf[["summary table"]]$filter <- rf_get_subset()
state$conf[["summary table"]]$order <- rf_get_order()
state
})
rf_get_subset <- reactive({
dt <- tryCatch(rhandsontable::hot_to_r(input$summ_subset),
error = function(e) def_summ_subset)
dt[Select == "il buono", extra := T]
dt[Select == "il cattivo", extra := F]
sdt <- dt[!is.na(extra)]
if (NROW(sdt) > 0) {
sdt[,paste0(`QA Column`," == ",extra)]
} else NULL
})
rf_get_order <- reactive({
dt <- tryCatch(rhandsontable::hot_to_r(input$order_summ),error = function(e) def_ord_summ)
tmp <- dt[Direction == "descending",.(`Column Name`=paste0("-",`Column Name`))]
tmp[,`Column Name`]
rf_get_inp_datatab <- eventReactive(input$datatab,{
z <- data.table::as.data.table(tryCatch(rhandsontable::hot_to_r(input$datatab)),
error = function(e) def_datatab)
z[,.(tag=as.character(tag),
adduct=as.character(adduct),
set=as.character(set)), with = T]
})
rf_get_inp_datafiles <- eventReactive(input$datafiles,{
z <- data.table::as.data.table(tryCatch(rhandsontable::hot_to_r(input$datafiles)),
error = function(e) def_datafiles)
z[,.(File,
tag=as.character(tag)), with = T]
})
observeEvent(input$project_b,{
wd <- tcltk::tk_choose.dir(default = getwd(),
caption = "Choose project directory")
message("Set project dir to ", wd)
rv_state$conf$project <- wd
})
observeEvent(input$comp_list_b, {
filters <- matrix(c("CSV files", ".csv",
"All files", "*"),
compfiles <- tcltk::tk_choose.files(filters=filters)
message("(config) Selected compound lists: ", paste(compfiles,collapse = ","))
rv_state$conf$compounds$lists <- if (length(compfiles)>0 && nchar(compfiles[[1]])>0) compfiles else "Nothing selected."
})
observeEvent(input$datafiles_b,{
filters <- matrix(c("mzML files", ".mzML",
"All files", "*"),
2, 2, byrow = TRUE)
fns <- tcltk::tk_choose.files(filters=filters)
message("(config) Selected data files: ", paste(fns,collapse = ","))
## Did the user choose any files?
if (length(fns) > 0) {
oldtab <- rf_get_inp_datafiles()
newf <- setdiff(fns,oldtab$File)
nr <- NROW(oldtab)
tmp <- if (length(newf)>0) shinyscreen:::dtable(File=newf,tag=paste0('F',(nr+1):(nr + length(newf)))) else shinyscreen:::dtable(File=character(),tag=character())
z <- rbind(oldtab, tmp)
z[,tag:=as.character(tag)]
rv_dfiles(z)
}
})
observe({
df_tab <- rf_get_inp_datafiles()
state <- rf_compound_input_state()
isolate(oldtab <- rf_get_inp_datatab())
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
oldt <- oldtab$tag
tagl <- df_tab$tag
diff <- setdiff(tagl,
oldt)
res <- if (length(diff)!=0) {
## Only change the tag names in the old ones.
pos_tag <- 1:length(tagl)
pos_old <- 1:NROW(oldtab)
pos_mod <- intersect(pos_tag,pos_old)
new_tag <- tagl[pos_mod]
if (NROW(oldtab)>0) oldtab[pos_mod,tag := ..new_tag]
## Now add tags for completely new files, if any.
rest_new <- if (NROW(oldtab) > 0) setdiff(diff,new_tag) else diff
tmp <- shinyscreen:::dtable(tag=rest_new,
adduct=character(0),
set=character(0))
dt <-data.table::as.data.table(rbind(as.data.frame(oldtab),
as.data.frame(tmp)))
dt[tag %in% df_tab$tag,]
} else oldtab
rv_datatab(res)
})
observe({
dtab <- rv_datatab()
dfiles <- rv_dfiles()
message("(config) Generating mzml from rv.")
isolate(rv_state$input$tab$mzml <- dtab[dfiles,on="tag"])
}, label = "mzml_from_rv")
observe({
dtab <- rf_get_inp_datatab()
dfiles <- rf_get_inp_datafiles()
message("(config) Generating mzml from inputs.")
res <- dtab[dfiles,on="tag"]
data.table::setnames(res,"File","Files")
isolate(rv_state$input$tab$mzml <- res)
}, label = "mzml_from_inp")
m <- rf_conf_state()
fn_c_state <- file.path(m$conf$project,
yaml::write_yaml(x=m$conf,file=fn_c_state)
message("(extract) Config written to ", fn_c_state)
state <- withr::with_dir(new=m$conf$project,
m <- setup_phase(m)
m <- mk_comp_tab(m)
extr_data(m)
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
z <- shinyscreen::merge2rev(rv_state,lst = state)
eval(z)
## rv_state <<- list2rev(state)
})
observeEvent(input$presc_b,{
validate(need(NROW(rv_state$extr$ms) > 0,
message = "Perform extraction first."))
m <- rev2list(rv_state)
fn_c_state <- file.path(m$conf$project,
paste0("presc.",shinyscreen:::FN_CONF))
yaml::write_yaml(x=m$conf,file=fn_c_state)
message("(prescreen) Config written to ", fn_c_state)
state <- withr::with_dir(new=m$conf$project,
code = {
m <- prescreen(m)
m <- sort_spectra(m)
subset_summary(m)
})
message("(prescreen) Done prescreening.")
z <- shinyscreen::merge2rev(rv_state,lst = state)
eval(z)
observeEvent(input$plot_b,{
validate(need(NROW(rv_state$out$tab$flt_summ) > 0,
message = "Perform prescreening first."))
m <- rev2list(rv_state)
fn_c_state <- file.path(m$conf$project,
paste0("genplot.",shinyscreen:::FN_CONF))
yaml::write_yaml(x=m$conf,file=fn_c_state)
message("(generate plots) Config written to ", fn_c_state)
state <- withr::with_dir(new=m$conf$project,
code = {
m <- create_plots(m)
save_plots(m)
})
message("(generate plots) Done generating plots.")
z <- shinyscreen::merge2rev(rv_state,lst = state)
eval(z)
})
observeEvent(input$conf_file_save_b,
{
state <- rf_conf_state()
ftab <- get_fn_ftab(state)
fconf <- get_fn_conf(state)
yaml::write_yaml(state$conf,
file = fconf)
shinyscreen:::tab2file(tab=state$input$tab$mzml,file=ftab)
message("Written data-file table to ",ftab)
message("Written config to ",fconf)
})
observeEvent(input$conf_file_load_b,
{
filters <- matrix(c("YAML files", ".yaml",
"All files", "*"),
2, 2, byrow = TRUE)
fn <- tcltk::tk_choose.files(filters=filters,
multi = F)
message("(config) Loading config from: ", paste(fn,collapse = ","))
fn <- if (length(fn)>0 && nchar(fn[[1]])>0) fn else ""
if (nchar(fn) > 0) {
state <- new_state_fn_conf(fn)
conf <- state$conf
}
})
observeEvent(input$state_file_load_b,{
filters <- matrix(c("RDS files", ".rds",
"All files", "*"),
2, 2, byrow = TRUE)
fn <- tcltk::tk_choose.files(filters=filters,
multi = F)
message("(config) Loading state from: ", paste(fn,collapse = ","))
fn <- if (length(fn)>0 && nchar(fn[[1]])>0) fn else ""
if (nchar(fn) > 0) {
state <- readRDS(file=fn)
z <- shinyscreen::merge2rev(rv_state,lst = state)
print(z)
eval(z)
update_gui(rv_state$conf, session=session)
}
})
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
```
<!-- Tolerance -->
```{r, include='false', context = 'server'}
uni_ass <- function(val,unit) {
paste(input[[val]],
input[[unit]])
}
observe({
rv_state$conf$tolerance[["ms1 fine"]] <- uni_ass("ms1_fine",
"ms1_fine_unit")
rv_state$conf$tolerance[["ms1 coarse"]] <- uni_ass("ms1_coarse",
"ms1_coarse_unit")
rv_state$conf$tolerance[["eic"]] <- uni_ass("ms1_eic",
"ms1_eic_unit")
rv_state$conf$tolerance[["rt"]] <- uni_ass("ms1_rt_win",
"ms1_rt_win_unit")
})
```
<!-- Prescreen -->
```{r, include='false', context = 'server'}
## uni_ass <- function(val,unit) {
## paste(input[[val]],
## input[[unit]])
## }
observe({
rv_state$conf$prescreen[["ms1_int_thresh"]] <- input[["ms1_int_thresh"]]
rv_state$conf$prescreen[["ms2_int_thresh"]] <- input[["ms2_int_thresh"]]
rv_state$conf$prescreen[["s2n"]] <- input$s2n
rv_state$conf$prescreen[["ret_time_shift_tol"]] <- uni_ass("ret_time_shift_tol",
"ret_time_shift_tol_unit")
})
<!-- Plotting -->
```{r, include='false', context = 'server'}
observe({
vals <- input$plot_log
checked <- c("MS1 EIC"=F,
"MS2 EIC"=F,
"MS2 Spectrum"=F)
if (length(vals)!=0) checked[vals] <- T
l <- list()
l <- c(if (checked[["MS1 EIC"]]) "ms1_eic_int" else NULL,l)
l <- c(if (checked[["MS2 EIC"]]) "ms2_eic_int" else NULL,l)
l <- c(if (checked[["MS2 Spectrum"]]) "ms2_spec_int" else NULL,l)
rv_state$conf$figures[["logaxes"]] <- l[!sapply(l,is.null)]
rv_state$conf$figures$rt_min <- uni_ass("plot_rt_min","plot_rt_min_unit")
rv_state$conf$figures$rt_max <- uni_ass("plot_rt_max","plot_rt_max_unit")
})
```
<!-- Report -->
```{r, include='false', context = 'server'}
observe({
rv_state$conf$report$author <- input$rep_aut
rv_state$conf$report$title <- input$rep_tit
})
```
<!-- Render -->
```{r, include="false", context="server"}
output$project <- renderText(rv_state$conf$project)