Newer
Older
author: Environmental Cheminformatics Group, LCSB, University of Luxembourg
title: "`r paste('Shinyscreen', packageVersion('shinyscreen'))`"
```{r, context='setup', include='false'}
def_datafiles <- shinyscreen:::dtable(File=character(0),
tag=character(0))
def_datatab <- shinyscreen:::dtable("tag"=factor(),
"adduct"=factor(levels=shinyscreen:::DISP_ADDUCTS),
"set"=factor())
def_summ_subset <- shinyscreen:::dtable("QA Column"=shinyscreen:::QA_FLAGS,
"Select"=factor("il irrilevante",levels=c("il irrilevante",
"il buono",
"il cattivo")))
## RMassBank masks shiny::validate. Unmask it.
validate <- shiny::validate
## def_state$input$tab$tags <- def_datatab
compl_sets <- eventReactive(rv_state$input$tab$setid,
rv_state$input$tab$setid[,unique(set)])
## Reactive values to support some of the UI elements.
## rv_ui <- reactiveValues(datatab=def_tags)
## Update with data-files.
rv_dfiles <- reactiveVal(def_datafiles)
## Data-file table when loading.
rv_datatab <- reactiveVal(def_datatab)
# Configuration {.tabset}
## Inputs
<details>
<summary>Specify the project directory</summary>
This is where the output files and the state of the analysis will be
saved.
</details>
```{r, echo=FALSE}
actionButton(inputId = "project_b",
label= "Project")
```
Current project directory is `r textOutput("project", inline=T)`
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
<details><summary>Load the compound list(s)</summary>
A compound list is composed of entries describing compounds. This
description is used to search for its spectrum in the data file. The
list is a table in the ***CSV*** format and contains these columns,
* ***ID*** : required column, must be filled; this is a user-defined
ID, uniquely associated with a compound
* ***Name*** : this column can be left blank; if not, it should contain the
names of the compounds
* ***SMILES*** : a _SMILES_ string, describing the structure of the
compound; this entry can be left empty only if one of either
***Formula***, or ***mz*** entries are not
* ***Formula*** : a chemical formula of a compound; this field can be
empty only if one of either ***SMILES***, or ***mz*** entries are
not
* ***mz*** : mass of the ionised compound; this field can be left
empty only if one of either ***SMILES***, or ***Formula*** is not
* ***CAS*** : the CAS number of the compound; it can be left empty
* ***RT*** : retention time of the MS1 peak in minutes, if known; can
be left empty.
Only ***ID*** and one of ***SMILES***, ***Formula*** or ***mz*** must
be filled. When structure, or a formula of a compound is known, it is
also possible to look for various adducts in the sample. Of course,
scanning for completely unknown compounds is also supported by the
***mz*** column. In this case, ***mz*** is the mass of the ion.
It is strongly recommended to quote SMILES, names and formulas in the
CSV file used with Shinyscreen.
</details>
```{r, echo=FALSE}
actionButton(inputId = "comp_list_b",
label= "Compound list(s)")
```
<details><summary>Load compound set list (_setid_ table)</summary>
The compound lists can contain more entries than is necessary. Using
the _setid_ lists, it is possible to create _compound sets_ which
contain only those compounds that will actually be searched for in the
data files. A _setid table_ is a _CSV_ containing at least two
columns,
* ***ID*** : the ID entry from the compound list
* ***set*** : an user-defined set name.
</details>
```{r, echo=FALSE}
actionButton(inputId = "setid_b",
label= "Load the setid table")
```
`r htmlOutput("setids", inline=T)`
## Data files
<details><summary>Load data files</summary>
Shinyscreen currently supports only the **mzML** file format. After
loading the files, set file tags in the file table (column
**tag**). Additionally, specify a set of compounds that is supposed
to be extracted from the file using the **set** column. Finally,
specify the **adduct** in the adduct column. In case of compounds
with unknown structure and formula, the adduct is ignored for obvious
reasons.
</details>
```{r, echo=FALSE}
actionButton(inputId = "datafiles_b",
label= "Load data files.")
```
<details><summary>Assign tags to data files.</summary>
Each tag designates an unique file. Use the table below to assign
tags.
</details>
```{r, echo=FALSE}
rhandsontable::rHandsontableOutput("datafiles")
```
<details><summary>Assign sets to tags.</summary>
For each tag, assign a set and an adduct (if the structure information
exists, otherwise _adduct_ column is ignored).
</details>
```{r, echo=F}
rhandsontable::rHandsontableOutput("datatab")
```
## Extraction
### Spectra extraction based settings
Extract all entries matching the target mass within this error in the
precursor table.
</details>
```{r, echo=F}
shinyscreen::mz_input(input_mz = "ms1_coarse",
input_unit = "ms1_coarse_unit",
def_mz = def_state$conf$tolerance[["ms1 coarse"]],
def_unit = "Da")
The precursor table masses can be of lower accuracy. Once there is a
match within the coarse error, it can be further checked versus the
fine error bounds directly in the mass spectrum.
</details>
```{r, echo=F}
shinyscreen::mz_input(input_mz = "ms1_fine",
input_unit = "ms1_fine_unit",
def_mz = def_state$conf$tolerance[["ms1 fine"]],
def_unit = "ppm")
```
The mz interval over which the intensities are aggregated to generate
a chromatogram.
</details>
```{r, echo=F}
shinyscreen::mz_input(input_mz = "ms1_eic",
input_unit = "ms1_eic_unit",
def_mz = def_state$conf$tolerance[["eic"]],
def_unit = "Da")
```
If the expected retention time has been specified for the compound,
then search for the MS1 signature inside the window defined by this
range.
</details>
```{r, echo=F}
shinyscreen::rt_input(input_rt = "ms1_rt_win",
input_unit = "ms1_rt_win_unit",
def_rt = def_state$conf$tolerance[["rt"]],
def_unit = "min")
```
## Prescreening
Ignore MS1 signal below the threshold.
</details>
```{r, echo=F}
numericInput(inputId = "ms1_int_thresh",
label = NULL,
value = def_state$conf$prescreen$ms1_int_thresh)
```
Ignore MS2 signal below the threshold.
</details>
```{r, echo=F}
numericInput(inputId = "ms2_int_thresh",
label = NULL,
value = def_state$conf$prescreen$ms2_int_thresh)
```
MS1 signal-to-noise ratio.
```{r, echo=F}
numericInput(inputId = "s2n",
label = NULL,
value = def_state$conf$prescreen$s2n)
```
Look for associated MS2 spectrum within this window around the MS1
peak.
</details>
```{r, echo=F}
shinyscreen::rt_input(input_rt = "ret_time_shift_tol",
input_unit = "ret_time_shift_tol_unit",
def_rt = def_state$conf$prescreen[["ret_time_shift_tol"]],
<div style= "display: flex; vertical-align:top; ">
Filter entries in the summary table according to the QA criteria.
* **qa_pass** : entries that passed all checks
* **qa_ms1_exists** : MS1 intensity is above the MS1 threshold
* **qa_ms2_exists** : those entries for which some MS2 spectra have been found
* **qa_ms1_above_noise** : MS1 is intense enough and above the noise level
* **qa_ms2_good_int** : MS2 intensity is above the MS2 threshold
* **qa_ms2_near** : MS2 spectrum is close enough to the MS1 peak
For those who do not speak Italian (and do not dig the bad Sergio
Leone pun):
* **il irrelevante** : ignore QA criterion
* **il buono** : entry passed QA
* **il cattivo** : entry failed QA
rhandsontable::rHandsontableOutput("summ_subset")
## checkboxGroupInput("summ_subset",
## label=NULL,
## choiceNames = shinyscreen:::QA_FLAGS,
## choiceValues = shinyscreen:::QA_FLAGS)
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
<details><summary>Ordering by columns</summary>
It is possible to order the summary table using columns (keys):
*`r paste(gsub("^-(.+)","\\1",shinyscreen:::DEF_INDEX_SUMM), collapse = ',')`*.
The sequence of columns in the table below describes the
sequence of ordering steps -- the key in the first row sorts the
entire summary table and subsequent keys break the ties.
</details>
```{r, echo=F}
rhandsontable::rHandsontableOutput("order_summ")
```
</div>
</div>
<!-- <details><summary>Order entries</summary> -->
<!-- Sequence of column a -->
<!-- </details> -->
<!-- ```{r, echo=F} -->
<!-- checkboxGroupInput("summ_subset", -->
<!-- label=NULL, -->
<!-- choiceNames = shinyscreen:::QA_FLAGS, -->
<!-- choiceValues = 1:length(shinyscreen:::QA_FLAGS)) -->
<!-- ``` -->
### Logarithmic axis
```{r, echo=F}
checkboxGroupInput("plot_log",
label=NULL,
choices = c("MS1 EIC","MS2 EIC","MS2 Spectrum"),
selected = character(0))
```
### Global retention time range
```{r, echo=F}
shinyscreen::rt_input(input_rt = "plot_rt_min",
input_unit = "plot_rt_min_unit",
def_rt = NA_real_,
def_unit = "min",
pref = "min:")
shinyscreen::rt_input(input_rt = "plot_rt_max",
input_unit = "plot_rt_max_unit",
def_rt = NA_real_,
def_unit = "min",
pref = "max:")
```
```{r, echo=F}
shiny::textInput(inputId = "rep_aut", label = "Report author", value = def_state$conf$report$author)
shiny::textInput(inputId = "rep_tit", label = "Report title", value = def_state$conf$report$title)
```
# View compound Lists and Sets {.tabset}
## Compound List
```{r, echo=F}
DT::dataTableOutput("comp_table")
```
## Setid Table
```{r, echo=F}
DT::dataTableOutput("setid_table")
```
# Save and Restore Config
Load the config file if needed.
```{r, echo=FALSE}
actionButton(inputId = "conf_file_load_b",
label= "Load project config")
```
Save the config file if needed.
```{r, echo=FALSE}
actionButton(inputId = "conf_file_save_b",
label= "Save config")
```
<details><summary>Extract spectra from data files.</summary>
After Shinyscreen is configured, the compound and setid lists loaded, it
is possible to proceed with extracting the data. This is potentially a
time-intensive step, so some patience might be needed.
Once the data is extracted, it will be possible to quality check the
spectra associated with the compounds specified in the _setid_ list,
to subset that data, look at the plots and publish a report.
</details>
```{r, echo=FALSE}
label = "Extract")
```
# Browse Results
ord_nms <- gsub("^-(.+)","\\1",shinyscreen:::DEF_INDEX_SUMM)
ord_asc <- grepl("^-.+",shinyscreen:::DEF_INDEX_SUMM)
ord_asc <- factor(ifelse(ord_asc, "descending", "ascending"),levels = c("ascending","descending"))
def_ord_summ <- shinyscreen:::dtable("Column Name"=ord_nms,"Direction"=ord_asc)
```{r, include="false", context='server'}
observeEvent(input$setid_b, {
filters <- matrix(c("CSV files", ".csv",
"All files", "*"),
setids <- tcltk::tk_choose.files(filters=filters)
message("(config) Selected compound sets (setid): ", paste(setids,collapse = ","))
rv_state$conf$compounds$sets <- if (length(setids)>0 && nchar(setids[[1]])>0) setids else "Nothing selected."
})
rf_compound_input_state <- reactive({
sets <- rv_state$conf$compounds$sets
lst <- as.list(rv_state$conf$compounds$lists)
validate(need(length(lst)>0,
message = "Load the compound lists(s) first."))
message = "Load the setid table first."))
isolate({
state <- rev2list(rv_state)
m <- load_compound_input(state)
## Side effect! This is because my pipeline logic does not
## work nicely with reactive stuff.
rv_state$input$tab$cmpds <- list2rev(m$input$tab$cmpds)
rv_state$input$tab$setid <- m$input$tab$setid
m
state <- rev2list(rv_state)
dir.create(state$conf$project,showWarnings = F)
state
})
rf_conf_state <- reactive({
state <- rf_conf_proj()
mzml1 <- rf_get_inp_datatab()
mzml1[,`:=`(tag=as.character(tag),
set=as.character(set),
adduct=as.character(adduct))]
mzml2 <- tryCatch(rhandsontable::hot_to_r(input$datafiles),
error = function(e) def_datafiles)
ftab <- get_fn_ftab(state)
state$conf$data <- ftab
state$input$tab$mzml <- mzml
state$conf[["summary table"]]$filter <- rf_get_subset()
state$conf[["summary table"]]$order <- rf_get_order()
state
})
rf_get_subset <- reactive({
dt <- tryCatch(rhandsontable::hot_to_r(input$summ_subset),
error = function(e) def_summ_subset)
dt[Select == "il buono", extra := T]
dt[Select == "il cattivo", extra := F]
sdt <- dt[!is.na(extra)]
if (NROW(sdt) > 0) {
sdt[,paste0(`QA Column`," == ",extra)]
} else NULL
})
rf_get_order <- reactive({
dt <- tryCatch(rhandsontable::hot_to_r(input$order_summ),error = function(e) def_ord_summ)
dt[Direction == "descending",`Column Name` := paste0("-",`Column Name`)]
dt[,`Column Name`]
})
rf_get_inp_datatab <- eventReactive(input$datatab,{
z <- data.table::as.data.table(tryCatch(rhandsontable::hot_to_r(input$datatab)),
error = function(e) def_datatab)
message(colnames(z))
z[,.(tag=as.character(tag),
adduct=as.character(adduct),
set=as.character(set)), with = T]
})
observeEvent(input$project_b,{
wd <- tcltk::tk_choose.dir(default = getwd(),
caption = "Choose project directory")
message("Set project dir to ", wd)
rv_state$conf$project <- wd
})
observeEvent(input$comp_list_b, {
filters <- matrix(c("CSV files", ".csv",
"All files", "*"),
compfiles <- tcltk::tk_choose.files(filters=filters)
message("(config) Selected compound lists: ", paste(compfiles,collapse = ","))
rv_state$conf$compounds$lists <- if (length(compfiles)>0 && nchar(compfiles[[1]])>0) compfiles else "Nothing selected."
})
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
observeEvent(input$datafiles_b,{
filters <- matrix(c("mzML files", ".mzML",
"All files", "*"),
2, 2, byrow = TRUE)
fns <- tcltk::tk_choose.files(filters=filters)
message("(config) Selected data files: ", paste(fns,collapse = ","))
## Did the user choose any files?
if (length(fns) > 0) {
oldtab <- data.table::as.data.table(tryCatch(rhandsontable::hot_to_r(input$datafiles)),
error = function(e) def_datafiles)
newf <- setdiff(fns,oldtab$File)
nr <- NROW(oldtab)
tmp <- if (length(newf)>0) shinyscreen:::dtable(File=newf,tag=paste0('F',(nr+1):(nr + length(newf)))) else shinyscreen:::dtable(File=character(),tag=character())
z <- rbind(oldtab, tmp)
z[,tag:=as.character(tag)]
rv_dfiles(z)
}
})
observe({
input$datafiles
df_tab <- tryCatch(rhandsontable::hot_to_r(input$datafiles), error = function (e) def_datafiles)
state <- rf_compound_input_state()
isolate(oldtab <- rf_get_inp_datatab())
oldt <- oldtab$tag
tagl <- df_tab$tag
diff <- setdiff(tagl,
oldt)
res <- if (length(diff)!=0) {
## Only change the tag names in the old ones.
pos_tag <- 1:length(tagl)
pos_old <- 1:NROW(oldtab)
pos_mod <- intersect(pos_tag,pos_old)
new_tag <- tagl[pos_mod]
if (NROW(oldtab)>0) oldtab[pos_mod,tag := ..new_tag]
## Now add tags for completely new files, if any.
rest_new <- if (NROW(oldtab) > 0) setdiff(diff,new_tag) else diff
tmp <- shinyscreen:::dtable(tag=rest_new,
adduct=character(0),
set=character(0))
dt <-data.table::as.data.table(rbind(as.data.frame(oldtab),
as.data.frame(tmp)))
dt[tag %in% df_tab$tag,]
} else oldtab
rv_datatab(res)
})
observeEvent(input$extract_b,{
tmp <- rf_conf_state()
fn_c_state <- file.path(tmp$conf$project,
yaml::write_yaml(x=tmp$conf,file=fn_c_state)
message("(extract) Config written to ", fn_c_state)
state <- withr::with_dir(new=tmp$conf$project,
code = {
m <- setup_phase(tmp)
m <- mk_comp_tab(tmp)
extr_data(tmp)
})
message("(extract) Done extracting.")
rv_state <- list2rev(state)
observeEvent(input$conf_file_save_b,
{
state <- rf_conf_state()
ftab <- get_fn_ftab(state)
fconf <- get_fn_conf(state)
yaml::write_yaml(state$conf,
file = fconf)
shinyscreen:::tab2file(tab=state$input$tab$mzml,file=ftab)
message("Written data-file table to ",ftab)
message("Written config to ",fconf)
})
observeEvent(input$conf_file_load_b,
{
upd_unit <- function(entry,inp_val,inp_unit,choices) {
if (isTruthy(entry)) {
cntnt <- strsplit(entry,split = "[[:space:]]+")[[1]]
cntnt <- cntnt[nchar(cntnt) > 0]
if (length(cntnt)!=2) stop("(upd_unit) ","Unable to interpret ", entry)
val <- cntnt[[1]]
unit <- cntnt[[2]]
updateNumericInput(session = session,
inputId = inp_val,
value = as.numeric(val))
updateSelectInput(session = session,
inputId = inp_unit,
selected = unit,
choices = choices)
}
}
upd_num <- function(entry,inp_val) {
if (isTruthy(entry)) {
updateNumericInput(session = session,
inputId = inp_val,
value = as.numeric(entry))
}
}
upd_sel <- function(inputId,selected,choices) {
if (isTruthy(selected)) {
updateSelectInput(session = session,
inputId = inputId,
selected = selected,
choices = choices)
}
}
filters <- matrix(c("YAML files", ".yaml",
"All files", "*"),
2, 2, byrow = TRUE)
fn <- tcltk::tk_choose.files(filters=filters,
multi = F)
message("(config) Loading config from: ", paste(fn,collapse = ","))
fn <- if (length(fn)>0 && nchar(fn[[1]])>0) fn else ""
if (nchar(fn) > 0) {
state <- new_state_fn_conf(fn)
conf <- state$conf
isolate({
rv_state$conf$project <- conf$project
rv_state$conf$data <- conf$data
## Lists
rv_state$conf$compounds$lists <- conf$compounds$lists
rv_state$conf$compounds$sets <- conf$compounds$sets
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
## Tolerance
upd_unit(conf$tolerance[["ms1 fine"]],
"ms1_fine",
"ms1_fine_unit",
choices=c("ppm","Da"))
upd_unit(conf$tolerance[["ms1 coarse"]],
"ms1_coarse",
"ms1_coarse_unit",
choices=c("ppm","Da"))
upd_unit(conf$tolerance[["eic"]],
"ms1_eic",
"ms1_eic_unit",
choices=c("ppm","Da"))
upd_unit(conf$tolerance[["rt"]],
"ms1_rt_win",
"ms1_rt_win_unit",
choices=c("min","s"))
## Prescreen
upd_num(conf$prescreen[["ms1_int_thresh"]],
"ms1_int_thresh")
upd_num(conf$prescreen[["ms2_int_thresh"]],
"ms2_int_thresh")
upd_num(conf$prescreen[["s2n"]],
"s2n")
upd_unit(conf$prescreen[["ret_time_shift_tol"]],
"ret_time_shift_tol",
"ret_time_shift_tol_unit",
choices=c("min","s"))
## Files
df <- shinyscreen:::file2tab(conf$data)
rv_dfiles(df[,.(File=Files,tag)])
nms <- colnames(df)
nms <- nms[nms!="Files"]
fdt <- df[,..nms]
rv_datatab(fdt)
## figures
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
upd_unit(conf$figures$rt_min,
"plot_rt_min",
"plot_rt_min_unit",
choices=c("min","s"))
upd_unit(conf$figures$rt_max,
"plot_rt_max",
"plot_rt_max_unit",
choices=c("min","s"))
logentry <- conf$figures$logaxes
logchoice <- logical(0)
logchoice <- mapply(function(cn,uin) if (cn %in% logentry) uin else NA,
c("ms1_eic_int","ms2_eic_int","ms2_spec_int"),
c("MS1 EIC","MS2 EIC","MS2 Spectrum"),USE.NAMES = F)
logchoice <- logchoice[!is.na(logchoice)]
updateCheckboxGroupInput(session = session,
inputId = "plot_log",
choices = c("MS1 EIC",
"MS2 EIC",
"MS2 Spectrum"),
selected = logchoice)
## Report
if (isTruthy(conf$report$author)) updateTextInput(session,"rep_aut",value = conf$report$author)
if (isTruthy(conf$report$title)) updateTextInput(session,"rep_tit",value = conf$report$title)
})
}
})
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
```
<!-- Tolerance -->
```{r, include='false', context = 'server'}
uni_ass <- function(val,unit) {
paste(input[[val]],
input[[unit]])
}
observe({
rv_state$conf$tolerance[["ms1 fine"]] <- uni_ass("ms1_fine",
"ms1_fine_unit")
rv_state$conf$tolerance[["ms1 coarse"]] <- uni_ass("ms1_coarse",
"ms1_coarse_unit")
rv_state$conf$tolerance[["eic"]] <- uni_ass("ms1_eic",
"ms1_eic_unit")
rv_state$conf$tolerance[["rt"]] <- uni_ass("ms1_rt_win",
"ms1_rt_win_unit")
})
```
<!-- Prescreen -->
```{r, include='false', context = 'server'}
## uni_ass <- function(val,unit) {
## paste(input[[val]],
## input[[unit]])
## }
observe({
rv_state$conf$prescreen[["ms1_int_thresh"]] <- input[["ms1_int_thresh"]]
rv_state$conf$prescreen[["ms2_int_thresh"]] <- input[["ms2_int_thresh"]]
rv_state$conf$prescreen[["s2n"]] <- input$s2n
rv_state$conf$prescreen[["ret_time_shift_tol"]] <- uni_ass("ret_time_shift_tol",
"ret_time_shift_tol_unit")
})
<!-- Plotting -->
```{r, include='false', context = 'server'}
observe({
vals <- input$plot_log
checked <- c("MS1 EIC"=F,
"MS2 EIC"=F,
"MS2 Spectrum"=F)
if (length(vals)!=0) checked[vals] <- T
l <- list()
l <- c(if (checked[["MS1 EIC"]]) "ms1_eic_int" else NULL,l)
l <- c(if (checked[["MS2 EIC"]]) "ms2_eic_int" else NULL,l)
l <- c(if (checked[["MS2 Spectrum"]]) "ms2_spec_int" else NULL,l)
rv_state$conf$figures[["logaxes"]] <- l[!sapply(l,is.null)]
rv_state$conf$figures$rt_min <- uni_ass("plot_rt_min","plot_rt_min_unit")
rv_state$conf$figures$rt_max <- uni_ass("plot_rt_max","plot_rt_max_unit")
})
```
<!-- Report -->
```{r, include='false', context = 'server'}
observe({
rv_state$conf$report$author <- input$rep_aut
rv_state$conf$report$title <- input$rep_tit
})
```
<!-- Render -->
```{r, include="false", context="server"}
output$project <- renderText(rv_state$conf$project)
output$comp_lists <- renderText({
lsts <- rev2list(rv_state$conf$compounds$lists)
if (length(lsts) > 0 &&
isTruthy(lsts) &&
lsts != "Nothing selected.") {
paste(c("<ul>",
sapply(lsts,
function (x) paste("<li>",x,"</li>")),
"</ul>"))
} else "No compound list selected yet."
})
output$setids <- renderText({
sets <- rv_state$conf$compounds$sets
if (isTruthy(sets) && sets != "Nothing selected.")
paste("selected <em>setid</em> table:",
sets) else "No <em>setid</em> table selected."
})
output$order_summ <- rhandsontable::renderRHandsontable(rhandsontable::rhandsontable(def_ord_summ,
manualRowMove = T))
output$datafiles <- rhandsontable::renderRHandsontable(
{
rhandsontable::rhandsontable(as.data.frame(res),
width = "50%",
height = "25%",
allowInvalid=F)
})
output$datatab <- rhandsontable::renderRHandsontable(
{
if (NROW(res)>0) {
res$tag <- factor(res$tag,
levels = c(unique(res$tag),
"invalid"))
res$set <- factor(res$set,
levels = c(unique(setid$set),
"invalid"))
res$adduct <- factor(res$adduct,
levels = shinyscreen:::DISP_ADDUCTS)
}
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
rhandsontable::rhandsontable(res,stretchH="all",
allowInvalid=F)
})
output$comp_table <- DT::renderDataTable({
state <- rf_compound_input_state()
DT::datatable(state$input$tab$cmpds,
style = 'bootstrap',
class = 'table-condensed',
extensions = 'Scroller',
options = list(scrollX = T,
scrollY = 200,
deferRender = T,
scroller = T))
})
output$setid_table <- DT::renderDataTable({
state <- rf_compound_input_state()
DT::datatable(state$input$tab$setid,
style = 'bootstrap',
class = 'table-condensed',
extensions = 'Scroller',
options = list(scrollX = T,
scrollY = 200,
deferRender = T,
scroller = T))
output$summ_subset <- rhandsontable::renderRHandsontable({
rhandsontable::rhandsontable(def_summ_subset)
})
```
```{r, echo=F, context = 'server'}
session$onSessionEnded(function () stopApp())