Newer
Older
author: Environmental Cheminformatics Group, LCSB, University of Luxembourg
title: "`r paste('Shinyscreen', packageVersion('shinyscreen'))`"
options(browser='icecat')
rend <- function() {
unlink(list.files(pattern = ".*html$"))
unlink(list.files(pattern = ".*Rmd"))
SHINYSCREEN_PATH <- "~/cabinet/shinyscreen"
FN_WORKDIR_STATE <- "conf-state.yaml"
load_package <- function(name,src=NULL,reload_pkgs=NULL) {
for (name in c(reload_pkgs,name)) {
pname <- paste0("package:",name)
if (pname %in% search()) eval(substitute(detach(pname,unload=T),list(pname=pname)))
}
if (!is.null(src)) devtools::install(src, upgrade = "never")
for (name in rev(c(reload_pkgs,name))) {
eval(substitute(library(name,list(name=name))))
}
invisible(NULL)
dir.create("pkgs",showWarnings = F)
.libPaths(c("pkgs",.libPaths()))
Sys.setenv("R_LIBS_USER"="pkgs")
file.copy("~/cabinet/shinyscreen/inst/rmd/app.Rmd","./app_copy.Rmd")
load_package("shinyscreen",src="~/cabinet/shinyscreen")
rmarkdown::run(file = "app_copy.Rmd")
```{r, include = "false"}
SHINYSCREEN_PATH <- "~/cabinet/shinyscreen"
FN_WORKDIR_STATE <- "conf-state.yaml"
```{r, include="false"}
options(future.globals.onReference = "warn")
future::plan('multiprocess',workers=4)
## m <- run(fn_conf = FN_WORKDIR_STATE)
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
```{r, context='setup', echo=F}
def_state <- new_state()
```
# Configuration {.tabset}
## Inputs
<details>
<summary>Specify the project directory</summary>
This is where the output files and the state of the analysis will be
saved.
</details>
```{r, echo=FALSE}
actionButton(inputId = "project_b",
label= "Project")
```
Load the config file if needed.
```{r, echo=FALSE}
actionButton(inputId = "conf_file_b",
label= "Load config")
```
<details><summary>Load the compound list(s)</summary>
A compound list is composed of entries describing compounds. This
description is used to search for its spectrum in the data file. The
list is a table in the ***CSV*** format and contains these columns,
* ***ID*** : required column, must be filled; this is a user-defined
ID, uniquely associated with a compound
* ***Name*** : this column can be left blank; if not, it should contain the
names of the compounds
* ***SMILES*** : a _SMILES_ string, describing the structure of the
compound; this entry can be left empty only if one of either
***Formula***, or ***mz*** entries are not
* ***Formula*** : a chemical formula of a compound; this field can be
empty only if one of either ***SMILES***, or ***mz*** entries are
not
* ***mz*** : mass of the ionised compound; this field can be left
empty only if one of either ***SMILES***, or ***Formula*** is not
* ***CAS*** : the CAS number of the compound; it can be left empty
* ***RT*** : retention time of the MS1 peak in minutes, if known; can
be left empty.
Only ***ID*** and one of ***SMILES***, ***Formula*** or ***mz*** must
be filled. When structure, or a formula of a compound is known, it is
also possible to look for various adducts in the sample. Of course,
scanning for completely unknown compounds is also supported by the
***mz*** column. In this case, ***mz*** is the mass of the ion.
It is strongly recommended to quote SMILES, names and formulas in the
CSV file used with Shinyscreen.
</details>
```{r, echo=FALSE}
actionButton(inputId = "comp_list_b",
label= "Compound list(s)")
```
<details><summary>Load compound set list (_setid_ table)</summary>
The compound lists can contain more entries than is necessary. Using
the _setid_ lists, it is possible to create _compound sets_ which
contain only those compounds that will actually be searched for in the
data files. A _setid table_ is a _CSV_ containing at least two
columns,
* ***ID*** : the ID entry from the compound list
* ***set*** : an user-defined set name.
</details>
```{r, echo=FALSE}
actionButton(inputId = "setid_b",
label= "Load the setid table")
```
<details><summary>Load data files</summary>
Shinyscreen currently supports only the ***mzML*** file format. After
loading the files, set file tags in the file table (column
***tag***). Additionally, specify a set of compounds that is supposed
to be extracted from the file using the ***set*** column. Finally,
specify the ***adduct*** in the adduct column. In case of compounds
with unknown structure and formula, the adduct is ignored for obvious
reasons.
</details>
```{r, echo=FALSE}
actionButton(inputId = "datafiles_b",
label= "Load data files.")
```
```{r, context='server', echo=FALSE}
## b_project <- eventReactive(input$project, {
## #dir <- tk_choose.dir(,caption = "Select project directory")
## ""
## })
#rv_conf$project
#print(rv_conf)
## rv_conf$project <- b_project()
```
## Extraction
### Spectra extraction based settings
Extract all entries matching the target mass within this error in the
precursor table.
</details>
```{r, echo=F}
shinyscreen::mz_input(input_mz = "ms1_coarse",
input_unit = "ms1_coarse_unit",
def_mz = def_state$conf$tolerance[["ms1 coarse"]],
def_unit = "Da")
The precursor table masses can be of lower accuracy. Once there is a
match within the coarse error, it can be further checked versus the
fine error bounds directly in the mass spectrum.
</details>
```{r, echo=F}
shinyscreen::mz_input(input_mz = "ms1_fine",
input_unit = "ms1_fine_unit",
def_mz = def_state$conf$tolerance[["ms1 fine"]],
def_unit = "ppm")
```
The mz interval over which the intensities are aggregated to generate
a chromatogram.
</details>
```{r, echo=F}
shinyscreen::mz_input(input_mz = "ms1_eic",
input_unit = "ms1_eic_unit",
def_mz = def_state$conf$tolerance[["eic"]],
def_unit = "Da")
```
If the expected retention time has been specified for the compound,
then search for the MS1 signature inside the window defined by this
range.
</details>
```{r, echo=F}
shinyscreen::rt_input(input_rt = "ms1_rt_win",
input_unit = "ms1_rt_win_unit",
def_rt = def_state$conf$tolerance[["rt"]],
def_unit = "min")
```
## Prescreening
Ignore MS1 signal below the threshold.
</details>
```{r, echo=F}
numericInput(inputId = "ms1_int_thresh",
label = NULL,
value = def_state$conf$prescreen$ms1_int_thresh)
```
Ignore MS2 signal below the threshold.
</details>
```{r, echo=F}
numericInput(inputId = "ms2_int_thresh",
label = NULL,
value = def_state$conf$prescreen$ms2_int_thresh)
```
MS1 signal-to-noise ratio.
```{r, echo=F}
numericInput(inputId = "s2n",
label = NULL,
value = def_state$conf$prescreen$s2n)
```
Look for associated MS2 spectrum within this window around the MS1
peak.
</details>
```{r, echo=F}
shinyscreen::rt_input(input_rt = "ret_time_shift_tol",
input_unit = "ret_time_shift_tol_unit",
def_rt = def_state$conf$tolerance[["ret_time_shift_tol"]],
def_unit = "min")
```
<div style= "display: flex; vertical-align:top; ">
<div>
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
<details><summary>Filter summary table</summary>
Selection criteria for filtering entries in the summary table
according to the QA criteria.
* **qa_pass** : entries that passed all checks
* **qa_ms1_exists** : MS1 intensity is above the MS1 threshold
* **qa_ms2_exists** : those entries for which some MS2 spectra have been found
* **qa_ms1_above_noise** : MS1 is intense enough and above the noise level
* **qa_ms2_good_int** : MS2 intensity is above the MS2 threshold
* **qa_ms2_near** : MS2 spectrum is close enough to the MS1 peak
</details>
```{r, echo=F}
checkboxGroupInput("summ_subset",
label=NULL,
choiceNames = shinyscreen:::QA_FLAGS,
choiceValues = shinyscreen:::QA_FLAGS)
```
</div>
<div>
<details><summary>Ordering by columns</summary>
It is possible to order the summary table using columns (keys):
*`r paste(gsub("^-(.+)","\\1",shinyscreen:::DEF_INDEX_SUMM), collapse = ',')`*.
The sequence of columns in the table below describes the
sequence of ordering steps -- the key in the first row sorts the
entire summary table and subsequent keys break the ties.
</details>
```{r, echo=F}
rhandsontable::rHandsontableOutput("order_summ")
```
</div>
</div>
<!-- <details><summary>Order entries</summary> -->
<!-- Sequence of column a -->
<!-- </details> -->
<!-- ```{r, echo=F} -->
<!-- checkboxGroupInput("summ_subset", -->
<!-- label=NULL, -->
<!-- choiceNames = shinyscreen:::QA_FLAGS, -->
<!-- choiceValues = 1:length(shinyscreen:::QA_FLAGS)) -->
<!-- ``` -->
### Logarithmic axis
```{r, echo=F}
checkboxGroupInput("plot_log",
label=NULL,
choiceNames = c("MS1 EIC","MS2 EIC","MS2 Spectrum"),
choiceValues = c(F,F,F))
```
### Global retention time range
```{r, echo=F}
shinyscreen::rt_input(input_rt = "plot_rt_min",
input_unit = "plot_rt_min_unit",
def_rt = NA_real_,
def_unit = "min",
pref = "min:")
shinyscreen::rt_input(input_rt = "plot_rt_max",
input_unit = "plot_rt_max_unit",
def_rt = NA_real_,
def_unit = "min",
pref = "max:")
```
## Report
# Extract Data and Prescreen
<details><summary>Extract spectra from data files.</summary>
After Shinyscreen is configured, the compound and setid lists loaded, it
is possible to proceed with extracting the data. This is potentially a
time-intensive step, so some patience might be needed.
Once the data is extracted, it will be possible to quality check the
spectra associated with the compounds specified in the _setid_ list,
to subset that data, look at the plots and publish a report.
</details>
```{r, echo=FALSE}
actionButton(inputId = "extract",
label = "Extract")
```
# Browse Results
<!-- Server comes here -->
```{r, include="false", context='setup'}
ord_nms <- gsub("^-(.+)","\\1",shinyscreen:::DEF_INDEX_SUMM)
ord_asc <- grepl("^-.+",shinyscreen:::DEF_INDEX_SUMM)
ord_asc <- factor(ifelse(ord_asc, "descending", "ascending"),levels = c("ascending","descending"))
def_ord_summ <- shinyscreen:::dtable("Column names"=ord_nms,"Direction"=ord_asc)
```
```{r, include="false", context='server'}
output$order_summ <- rhandsontable::renderRHandsontable(rhandsontable::rhandsontable(def_ord_summ,
manualRowMove = T))
```