Newer
Older
author: Environmental Cheminformatics Group, LCSB, University of Luxembourg
title: "`r paste('Shinyscreen', packageVersion('shinyscreen'))`"
```{r, context='setup', include='false'}
def_datafiles <- shinyscreen:::dtable(File=character(0),
tag=character(0))
def_datatab <- shinyscreen:::dtable("tag"=factor(),
"adduct"=factor(levels=shinyscreen:::DISP_ADDUCTS),
"set"=factor())
def_summ_subset <- shinyscreen:::dtable("QA Column"=shinyscreen:::QA_FLAGS,
"Select"=factor("il irrilevante",levels=c("il irrilevante",
"il buono",
"il cattivo")))
## def_state$input$tab$tags <- def_datatab
compl_sets <- eventReactive(rv_state$input$tab$setid,
rv_state$input$tab$setid[,unique(set)])
## Reactive values to support some of the UI elements.
## rv_ui <- reactiveValues(datatab=def_tags)
# Configuration {.tabset}
## Inputs
<details>
<summary>Specify the project directory</summary>
This is where the output files and the state of the analysis will be
saved.
</details>
```{r, echo=FALSE}
actionButton(inputId = "project_b",
label= "Project")
```
Current project directory is `r textOutput("project", inline=T)`
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
<details><summary>Load the compound list(s)</summary>
A compound list is composed of entries describing compounds. This
description is used to search for its spectrum in the data file. The
list is a table in the ***CSV*** format and contains these columns,
* ***ID*** : required column, must be filled; this is a user-defined
ID, uniquely associated with a compound
* ***Name*** : this column can be left blank; if not, it should contain the
names of the compounds
* ***SMILES*** : a _SMILES_ string, describing the structure of the
compound; this entry can be left empty only if one of either
***Formula***, or ***mz*** entries are not
* ***Formula*** : a chemical formula of a compound; this field can be
empty only if one of either ***SMILES***, or ***mz*** entries are
not
* ***mz*** : mass of the ionised compound; this field can be left
empty only if one of either ***SMILES***, or ***Formula*** is not
* ***CAS*** : the CAS number of the compound; it can be left empty
* ***RT*** : retention time of the MS1 peak in minutes, if known; can
be left empty.
Only ***ID*** and one of ***SMILES***, ***Formula*** or ***mz*** must
be filled. When structure, or a formula of a compound is known, it is
also possible to look for various adducts in the sample. Of course,
scanning for completely unknown compounds is also supported by the
***mz*** column. In this case, ***mz*** is the mass of the ion.
It is strongly recommended to quote SMILES, names and formulas in the
CSV file used with Shinyscreen.
</details>
```{r, echo=FALSE}
actionButton(inputId = "comp_list_b",
label= "Compound list(s)")
```
<details><summary>Load compound set list (_setid_ table)</summary>
The compound lists can contain more entries than is necessary. Using
the _setid_ lists, it is possible to create _compound sets_ which
contain only those compounds that will actually be searched for in the
data files. A _setid table_ is a _CSV_ containing at least two
columns,
* ***ID*** : the ID entry from the compound list
* ***set*** : an user-defined set name.
</details>
```{r, echo=FALSE}
actionButton(inputId = "setid_b",
label= "Load the setid table")
```
`r htmlOutput("setids", inline=T)`
## Data files
<details><summary>Load data files</summary>
Shinyscreen currently supports only the **mzML** file format. After
loading the files, set file tags in the file table (column
**tag**). Additionally, specify a set of compounds that is supposed
to be extracted from the file using the **set** column. Finally,
specify the **adduct** in the adduct column. In case of compounds
with unknown structure and formula, the adduct is ignored for obvious
reasons.
</details>
```{r, echo=FALSE}
actionButton(inputId = "datafiles_b",
label= "Load data files.")
```
<details><summary>Assign tags to data files.</summary>
Each tag designates an unique file. Use the table below to assign
tags.
</details>
```{r, echo=FALSE}
rhandsontable::rHandsontableOutput("datafiles")
```
<details><summary>Assign sets to tags.</summary>
For each tag, assign a set and an adduct (if the structure information
exists, otherwise _adduct_ column is ignored).
</details>
```{r, echo=F}
rhandsontable::rHandsontableOutput("datatab")
```
## Extraction
### Spectra extraction based settings
Extract all entries matching the target mass within this error in the
precursor table.
</details>
```{r, echo=F}
shinyscreen::mz_input(input_mz = "ms1_coarse",
input_unit = "ms1_coarse_unit",
def_mz = def_state$conf$tolerance[["ms1 coarse"]],
def_unit = "Da")
The precursor table masses can be of lower accuracy. Once there is a
match within the coarse error, it can be further checked versus the
fine error bounds directly in the mass spectrum.
</details>
```{r, echo=F}
shinyscreen::mz_input(input_mz = "ms1_fine",
input_unit = "ms1_fine_unit",
def_mz = def_state$conf$tolerance[["ms1 fine"]],
def_unit = "ppm")
```
The mz interval over which the intensities are aggregated to generate
a chromatogram.
</details>
```{r, echo=F}
shinyscreen::mz_input(input_mz = "ms1_eic",
input_unit = "ms1_eic_unit",
def_mz = def_state$conf$tolerance[["eic"]],
def_unit = "Da")
```
If the expected retention time has been specified for the compound,
then search for the MS1 signature inside the window defined by this
range.
</details>
```{r, echo=F}
shinyscreen::rt_input(input_rt = "ms1_rt_win",
input_unit = "ms1_rt_win_unit",
def_rt = def_state$conf$tolerance[["rt"]],
def_unit = "min")
```
## Prescreening
Ignore MS1 signal below the threshold.
</details>
```{r, echo=F}
numericInput(inputId = "ms1_int_thresh",
label = NULL,
value = def_state$conf$prescreen$ms1_int_thresh)
```
Ignore MS2 signal below the threshold.
</details>
```{r, echo=F}
numericInput(inputId = "ms2_int_thresh",
label = NULL,
value = def_state$conf$prescreen$ms2_int_thresh)
```
MS1 signal-to-noise ratio.
```{r, echo=F}
numericInput(inputId = "s2n",
label = NULL,
value = def_state$conf$prescreen$s2n)
```
Look for associated MS2 spectrum within this window around the MS1
peak.
</details>
```{r, echo=F}
shinyscreen::rt_input(input_rt = "ret_time_shift_tol",
input_unit = "ret_time_shift_tol_unit",
def_rt = def_state$conf$prescreen[["ret_time_shift_tol"]],
<div style= "display: flex; vertical-align:top; ">
Filter entries in the summary table according to the QA criteria.
* **qa_pass** : entries that passed all checks
* **qa_ms1_exists** : MS1 intensity is above the MS1 threshold
* **qa_ms2_exists** : those entries for which some MS2 spectra have been found
* **qa_ms1_above_noise** : MS1 is intense enough and above the noise level
* **qa_ms2_good_int** : MS2 intensity is above the MS2 threshold
* **qa_ms2_near** : MS2 spectrum is close enough to the MS1 peak
For those who do not speak Italian (and do not dig the bad Sergio
Leone pun):
* **il irrelevante** : ignore QA criterion
* **il buono** : entry passed QA
* **il cattivo** : entry failed QA
rhandsontable::rHandsontableOutput("summ_subset")
## checkboxGroupInput("summ_subset",
## label=NULL,
## choiceNames = shinyscreen:::QA_FLAGS,
## choiceValues = shinyscreen:::QA_FLAGS)
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
<details><summary>Ordering by columns</summary>
It is possible to order the summary table using columns (keys):
*`r paste(gsub("^-(.+)","\\1",shinyscreen:::DEF_INDEX_SUMM), collapse = ',')`*.
The sequence of columns in the table below describes the
sequence of ordering steps -- the key in the first row sorts the
entire summary table and subsequent keys break the ties.
</details>
```{r, echo=F}
rhandsontable::rHandsontableOutput("order_summ")
```
</div>
</div>
<!-- <details><summary>Order entries</summary> -->
<!-- Sequence of column a -->
<!-- </details> -->
<!-- ```{r, echo=F} -->
<!-- checkboxGroupInput("summ_subset", -->
<!-- label=NULL, -->
<!-- choiceNames = shinyscreen:::QA_FLAGS, -->
<!-- choiceValues = 1:length(shinyscreen:::QA_FLAGS)) -->
<!-- ``` -->
### Logarithmic axis
```{r, echo=F}
checkboxGroupInput("plot_log",
label=NULL,
choices = c("MS1 EIC","MS2 EIC","MS2 Spectrum"),
selected = character(0))
```
### Global retention time range
```{r, echo=F}
shinyscreen::rt_input(input_rt = "plot_rt_min",
input_unit = "plot_rt_min_unit",
def_rt = NA_real_,
def_unit = "min",
pref = "min:")
shinyscreen::rt_input(input_rt = "plot_rt_max",
input_unit = "plot_rt_max_unit",
def_rt = NA_real_,
def_unit = "min",
pref = "max:")
```
```{r, echo=F}
shiny::textInput(inputId = "rep_aut", label = "Report author", value = def_state$conf$report$author)
shiny::textInput(inputId = "rep_tit", label = "Report title", value = def_state$conf$report$title)
```
# View compound Lists and Sets {.tabset}
## Compound List
```{r, echo=F}
DT::dataTableOutput("comp_table")
```
## Setid Table
```{r, echo=F}
DT::dataTableOutput("setid_table")
```
# Save and Restore Config
Load the config file if needed.
```{r, echo=FALSE}
actionButton(inputId = "conf_file_load_b",
label= "Load project config")
```
Save the config file if needed.
```{r, echo=FALSE}
actionButton(inputId = "conf_file_save_b",
label= "Save config")
```
<details><summary>Extract spectra from data files.</summary>
After Shinyscreen is configured, the compound and setid lists loaded, it
is possible to proceed with extracting the data. This is potentially a
time-intensive step, so some patience might be needed.
Once the data is extracted, it will be possible to quality check the
spectra associated with the compounds specified in the _setid_ list,
to subset that data, look at the plots and publish a report.
</details>
```{r, echo=FALSE}
actionButton(inputId = "extract",
label = "Extract")
```
# Browse Results
ord_nms <- gsub("^-(.+)","\\1",shinyscreen:::DEF_INDEX_SUMM)
ord_asc <- grepl("^-.+",shinyscreen:::DEF_INDEX_SUMM)
ord_asc <- factor(ifelse(ord_asc, "descending", "ascending"),levels = c("ascending","descending"))
def_ord_summ <- shinyscreen:::dtable("Column Name"=ord_nms,"Direction"=ord_asc)
```{r, include="false", context='server'}
observeEvent(input$setid_b, {
filters <- matrix(c("CSV files", ".csv",
"All files", "*"),
2, 2, byrow = TRUE)
setids <- tcltk::tk_choose.files(filters=filters)
message("(config) Selected compound sets (setid): ", paste(setids,collapse = ","))
rv_state$conf$compounds$sets <- if (length(setids)>0 && nchar(setids[[1]])>0) setids else "Nothing selected."
})
rf_compound_input_state <- reactive({
sets <- rv_state$conf$compounds$sets
lst <- as.list(rv_state$conf$compounds$lists)
validate(need(length(lst)>0,
message = "Load the compound lists(s) first."))
validate(need(nchar(sets)>0,
message = "Load the setid table first."))
isolate({
state <- rev2list(rv_state)
m <- load_compound_input(state)
## Side effect! This is because my pipeline logic does not
## work nicely with reactive stuff.
rv_state$input$tab$cmpds <- list2rev(m$input$tab$cmpds)
rv_state$input$tab$setid <- m$input$tab$setid
m
})
rf_get_dfiles <- reactive({
input$datafiles_b
if (input$datafiles_b > 0) {
filters <- matrix(c("mzML files", ".mzML",
"All files", "*"),
2, 2, byrow = TRUE)
mzMLs <- tcltk::tk_choose.files(filters=filters)
message("(config) Selected data files: ", paste(mzMLs,collapse = ","))
mzMLs
} else character(0)
})
rf_dfiles_tab <- reactive({
mzMLs <- rf_get_dfiles()
isolate({oldtab <- data.table::as.data.table(rhandsontable::hot_to_r(input$datafiles))})
newf <- setdiff(mzMLs,oldtab$File)
nr <- NROW(oldtab)
tmp <- if (length(newf)>0) shinyscreen:::dtable(File=newf,tag=paste0('F',(nr+1):(nr + length(newf)))) else shinyscreen:::dtable(File=character(),tag=character())
rbind(oldtab,
tmp)
})
rf_tag_tab <- reactive({
state <- rf_compound_input_state()
isolate({oldtab <- rhandsontable::hot_to_r(input$datatab)})
oldt <- oldtab$tag
sets <- compl_sets()
sets <- if (length(sets)==1) sets <- c(sets,"invalid") #Just
#because
#when one
#level,
#rhandsontable
#has issues
#displaying
#it.
otagch <- as.character(oldt)
df_tab <- rhandsontable::hot_to_r(input$datafiles)
tagl <- df_tab$tag
diff <- setdiff(tagl,
otagch)
if (length(diff)!=0) {
## Only change the tag names in the old ones.
pos_tag <- 1:length(tagl)
pos_old <- 1:NROW(oldtab)
pos_mod <- intersect(pos_tag,pos_old)
new_tag <- tagl[pos_mod]
if (NROW(oldtab)>0) oldtab[pos_mod,tag := ..new_tag]
## Now add tags for completely new files, if any.
rest_new <- if (NROW(oldtab) > 0) setdiff(diff,new_tag) else diff
tmp <- shinyscreen:::dtable(tag=factor(rest_new,levels=tagl),
adduct=factor(levels = shinyscreen:::DISP_ADDUCTS),
set=factor(levels = sets))
dt <-data.table::as.data.table(rbind(as.data.frame(oldtab),
as.data.frame(tmp)))
dt[tag %in% df_tab$tag,]
} else oldtab
})
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
rf_conf_proj <- reactive({
state <- rev2list(rv_state)
dir.create(state$conf$project,showWarnings = F)
state
})
rf_conf_state <- reactive({
state <- rf_conf_proj()
mzml1 <- tryCatch(rhandsontable::hot_to_r(input$datatab),
error = function(e) def_datatab)
mzml2 <- tryCatch(rhandsontable::hot_to_r(input$datafiles),
error = function(e) def_datafiles)
mzml <- mzml1[mzml2,on="tag"]
setnames(mzml,"File","Files")
ftab <- get_fn_ftab(state)
state$conf$data <- ftab
state$input$tab$mzml <- mzml
state$conf[["summary table"]]$filter <- rf_get_subset()
state$conf[["summary table"]]$order <- rf_get_order()
state
})
rf_get_subset <- reactive({
dt <- tryCatch(rhandsontable::hot_to_r(input$summ_subset),
error = function(e) def_summ_subset)
dt[Select == "il buono", extra := T]
dt[Select == "il cattivo", extra := F]
sdt <- dt[!is.na(extra)]
if (NROW(sdt) > 0) {
sdt[,paste0(`QA Column`," == ",extra)]
} else NULL
})
rf_get_order <- reactive({
dt <- tryCatch(rhandsontable::hot_to_r(input$order_summ),error = function(e) def_ord_summ)
dt[Direction == "descending",`Column Name` := paste0("-",`Column Name`)]
dt[,`Column Name`]
})
observeEvent(input$project_b,{
wd <- tcltk::tk_choose.dir(default = getwd(),
caption = "Choose project directory")
message("Set project dir to ", wd)
rv_state$conf$project <- wd
})
observeEvent(input$comp_list_b, {
filters <- matrix(c("CSV files", ".csv",
"All files", "*"),
2, 2, byrow = TRUE)
compfiles <- tcltk::tk_choose.files(filters=filters)
message("(config) Selected compound lists: ", paste(compfiles,collapse = ","))
rv_state$conf$compounds$lists <- if (length(compfiles)>0 && nchar(compfiles[[1]])>0) compfiles else "Nothing selected."
})
observeEvent(input$extract,{
tmp <- rev2list(rv_state)
fn_c_state <- file.path(tmp$conf$project,
shinyscreen:::FN_CONF)
yaml::write_yaml(x=tmp$conf,file=fn_c_state)
message("(extract) Config written to ", fn_c_state)
})
observeEvent(input$conf_file_save_b,
{
state <- rf_conf_state()
ftab <- get_fn_ftab(state)
fconf <- get_fn_conf(state)
yaml::write_yaml(state$conf,
file = fconf)
shinyscreen:::tab2file(tab=state$input$tab$mzml,file=ftab)
message("Written data-file table to ",ftab)
message("Written config to ",fconf)
})
observeEvent(input$conf_file_load_b,
{
upd_unit <- function(entry,inp_val,inp_unit,choices) {
if (isTruthy(entry)) {
cntnt <- strsplit(entry,split = "[[:space:]]+")[[1]]
cntnt <- cntnt[nchar(cntnt) > 0]
if (length(cntnt)!=2) stop("(upd_unit) ","Unable to interpret ", entry)
val <- cntnt[[1]]
unit <- cntnt[[2]]
updateNumericInput(session = session,
inputId = inp_val,
value = as.numeric(val))
updateSelectInput(session = session,
inputId = inp_unit,
selected = unit,
choices = choices)
}
}
upd_num <- function(entry,inp_val) {
if (isTruthy(entry)) {
updateNumericInput(session = session,
inputId = inp_val,
value = as.numeric(entry))
}
}
upd_sel <- function(inputId,selected,choices) {
if (isTruthy(selected)) {
updateSelectInput(session = session,
inputId = inputId,
selected = selected,
choices = choices)
}
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
}
filters <- matrix(c("YAML files", ".yaml",
"All files", "*"),
2, 2, byrow = TRUE)
fn <- tcltk::tk_choose.files(filters=filters,
multi = F)
message("(config) Loading config from: ", paste(fn,collapse = ","))
fn <- if (length(fn)>0 && nchar(fn[[1]])>0) fn else ""
if (nchar(fn) > 0) {
state <- new_state_fn_conf(fn)
conf <- state$conf
isolate({
## Tolerance
upd_unit(conf$tolerance[["ms1 fine"]],
"ms1_fine",
"ms1_fine_unit",
choices=c("ppm","Da"))
upd_unit(conf$tolerance[["ms1 coarse"]],
"ms1_coarse",
"ms1_coarse_unit",
choices=c("ppm","Da"))
upd_unit(conf$tolerance[["eic"]],
"ms1_eic",
"ms1_eic_unit",
choices=c("ppm","Da"))
upd_unit(conf$tolerance[["rt"]],
"ms1_rt_win",
"ms1_rt_win_unit",
choices=c("min","s"))
## Prescreen
upd_num(conf$prescreen[["ms1_int_thresh"]],
"ms1_int_thresh")
upd_num(conf$prescreen[["ms2_int_thresh"]],
"ms2_int_thresh")
upd_num(conf$prescreen[["s2n"]],
"s2n")
upd_unit(conf$prescreen[["ret_time_shift_tol"]],
"ret_time_shift_tol",
"ret_time_shift_tol_unit",
choices=c("min","s"))
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
## Figures
upd_unit(conf$figures$rt_min,
"plot_rt_min",
"plot_rt_min_unit",
choices=c("min","s"))
upd_unit(conf$figures$rt_max,
"plot_rt_max",
"plot_rt_max_unit",
choices=c("min","s"))
logentry <- conf$figures$logaxes
logchoice <- logical(0)
logchoice <- mapply(function(cn,uin) if (cn %in% logentry) uin else NA,
c("ms1_eic_int","ms2_eic_int","ms2_spec_int"),
c("MS1 EIC","MS2 EIC","MS2 Spectrum"),USE.NAMES = F)
logchoice <- logchoice[!is.na(logchoice)]
updateCheckboxGroupInput(session = session,
inputId = "plot_log",
choices = c("MS1 EIC",
"MS2 EIC",
"MS2 Spectrum"),
selected = logchoice)
## Report
if (isTruthy(conf$report$author)) updateTextInput(session,"rep_aut",value = conf$report$author)
if (isTruthy(conf$report$title)) updateTextInput(session,"rep_tit",value = conf$report$title)
})
}
})
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
```
<!-- Tolerance -->
```{r, include='false', context = 'server'}
uni_ass <- function(val,unit) {
paste(input[[val]],
input[[unit]])
}
observe({
rv_state$conf$tolerance[["ms1 fine"]] <- uni_ass("ms1_fine",
"ms1_fine_unit")
rv_state$conf$tolerance[["ms1 coarse"]] <- uni_ass("ms1_coarse",
"ms1_coarse_unit")
rv_state$conf$tolerance[["eic"]] <- uni_ass("ms1_eic",
"ms1_eic_unit")
rv_state$conf$tolerance[["rt"]] <- uni_ass("ms1_rt_win",
"ms1_rt_win_unit")
})
```
<!-- Prescreen -->
```{r, include='false', context = 'server'}
## uni_ass <- function(val,unit) {
## paste(input[[val]],
## input[[unit]])
## }
observe({
rv_state$conf$prescreen[["ms1_int_thresh"]] <- input[["ms1_int_thresh"]]
rv_state$conf$prescreen[["ms2_int_thresh"]] <- input[["ms2_int_thresh"]]
rv_state$conf$prescreen[["s2n"]] <- input$s2n
rv_state$conf$prescreen[["ret_time_shift_tol"]] <- uni_ass("ret_time_shift_tol",
"ret_time_shift_tol_unit")
})
<!-- Plotting -->
```{r, include='false', context = 'server'}
observe({
vals <- input$plot_log
checked <- c("MS1 EIC"=F,
"MS2 EIC"=F,
"MS2 Spectrum"=F)
if (length(vals)!=0) checked[vals] <- T
l <- list()
l <- c(if (checked[["MS1 EIC"]]) "ms1_eic_int" else NULL,l)
l <- c(if (checked[["MS2 EIC"]]) "ms2_eic_int" else NULL,l)
l <- c(if (checked[["MS2 Spectrum"]]) "ms2_spec_int" else NULL,l)
rv_state$conf$figures[["logaxes"]] <- l[!sapply(l,is.null)]
rv_state$conf$figures$rt_min <- uni_ass("plot_rt_min","plot_rt_min_unit")
rv_state$conf$figures$rt_max <- uni_ass("plot_rt_max","plot_rt_max_unit")
})
```
<!-- Report -->
```{r, include='false', context = 'server'}
observe({
rv_state$conf$report$author <- input$rep_aut
rv_state$conf$report$title <- input$rep_tit
})
```
<!-- Render -->
```{r, include="false", context="server"}
output$project <- renderText(rv_state$conf$project)
output$comp_lists <- renderText({
lsts <- rev2list(rv_state$conf$compounds$lists)
if (length(lsts) > 0 &&
isTruthy(lsts) &&
lsts != "Nothing selected.") {
paste(c("<ul>",
sapply(lsts,
function (x) paste("<li>",x,"</li>")),
"</ul>"))
} else "No compound list selected yet."
})
output$setids <- renderText({
sets <- rv_state$conf$compounds$sets
if (isTruthy(sets) && sets != "Nothing selected.")
paste("selected <em>setid</em> table:",
sets) else "No <em>setid</em> table selected."
})
output$order_summ <- rhandsontable::renderRHandsontable(rhandsontable::rhandsontable(def_ord_summ,
manualRowMove = T))
output$datafiles <- rhandsontable::renderRHandsontable(
{
res <- if (length(rf_get_dfiles())>0) {
rf_dfiles_tab()
} else def_datafiles
rhandsontable::rhandsontable(as.data.frame(res),
width = "50%",
height = "25%",
allowInvalid=F)
})
output$datatab <- rhandsontable::renderRHandsontable(
{
df <- rhandsontable::hot_to_r(input$datafiles)
setid <- rv_state$input$tab$setid
res <- if (NROW(setid) > 0 &&
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
NROW(df) > 0) rf_tag_tab() else def_datatab
rhandsontable::rhandsontable(res,stretchH="all",
allowInvalid=F)
})
output$comp_table <- DT::renderDataTable({
state <- rf_compound_input_state()
DT::datatable(state$input$tab$cmpds,
style = 'bootstrap',
class = 'table-condensed',
extensions = 'Scroller',
options = list(scrollX = T,
scrollY = 200,
deferRender = T,
scroller = T))
})
output$setid_table <- DT::renderDataTable({
state <- rf_compound_input_state()
DT::datatable(state$input$tab$setid,
style = 'bootstrap',
class = 'table-condensed',
extensions = 'Scroller',
options = list(scrollX = T,
scrollY = 200,
deferRender = T,
scroller = T))
output$summ_subset <- rhandsontable::renderRHandsontable({
rhandsontable::rhandsontable(def_summ_subset)
})
```
```{r, echo=F, context = 'server'}
session$onSessionEnded(function () stopApp())