Newer
Older
## Copyright (C) 2020 by University of Luxembourg
## Licensed under the Apache License, Version 2.0 (the "License");
## you may not use this file except in compliance with the License.
## You may obtain a copy of the License at
## http://www.apache.org/licenses/LICENSE-2.0
## Unless required by applicable law or agreed to in writing, software
## distributed under the License is distributed on an "AS IS" BASIS,
## WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
## See the License for the specific language governing permissions and
## limitations under the License.
##' @export
new_state <- function() {
m <- new_conf()
init_state(m)
}
##' @export
new_rv_state <- function() react_v(m=list2rev(new_state()))
##' @export
new_state_fn_conf <- function(fn_conf) {
m <- new_state()
m$conf <- read_conf(fn_conf)
init_state(m)
}
run <- function(fn_conf) {
m <- new_state_fn_conf(fn_conf)
dir.create(m$conf$project,
showWarnings = F,
recursive = T)
m <- withr::with_dir(new=m$conf$project,code = run_in_dir(m))
setup_phase <- function(m) {
##' @export
run_in_dir <- function(m) {
m <- setup_phase(m)
m <- sort_spectra(m)
m <- subset_summary(m)
m <- create_plots(m)
m <- save_plots(m)
load_compound_input <- function(m) {
coll <- list()
fields <- colnames(EMPTY_CMPD_LIST)
fns <- m$conf$compounds$lists
for (l in 1:length(fns)) {
fn <- fns[[l]]
# fnfields <- somehow read the file columns in
dt <- file2tab(fn, colClasses=c(ID="character",
SMILES="character",
Formula="character",
Name="character",
RT="numeric",
mz="numeric"))
# nonexist <- setdiff(fnfields,fields)
coll[[l]] <- dt #if (length(nonexist)==0) dt else dt[,(nonexist) := NULL]
coll[[l]]$ORIG <- fn
}
cmpds <- if (length(fns)>0) rbindlist(l=c(list(EMPTY_CMPD_LIST), coll), use.names = T, fill = T) else EMPTY_CMPD_LIST
dups <- duplicated(cmpds$ID)
dups <- dups | duplicated(cmpds$ID,fromLast = T)
dupIDs <- cmpds$ID[dups]
dupfns <- cmpds$ORIG[dups]
msg <- ""
for (fn in unique(dupfns)) {
inds <- which(dupfns %in% fn)
fndupID <- paste(dupIDs[inds], collapse = ',')
msg <- paste(paste('Duplicate IDs', fndupID,'found in',fn),msg,sep = '\n')
}
## TODO: Should we just kick out the duplicates, instead of
## erroring?
assert(all(!dups), msg = msg)
cmpds[,("known"):=.(the_ifelse(!is.na(SMILES),"structure",the_ifelse(!is.na(Formula),"formula","mz")))]
m$input$tab$cmpds <- cmpds
load_data_input <- function(m) {
m$input$tab$mzml <- file2tab(m$conf$data)
m
}
##' @export
load_inputs <- function(m) {
m <- load_data_input(m)
m
}
mk_comp_tab <- function(m) {
setid <- m$input$tab$setid
cmpds<-m$input$tab$cmpds
setkey(cmpds,ID)
mzml[,`:=`(wd=sapply(Files,add_wd_to_mzml,m$conf$project))]
assert(nrow(cmpds)>0,msg="No compound lists have been provided.")
message("Begin generation of the comprehensive table.")
comp <- cmpds[setid,on="ID"][mzml,.(tag,adduct,ID,RT,set,Name,Files,wd,SMILES,Formula,mz,known),on="set",allow.cartesian=T]
tab2file(tab=comp,file=paste0("setidmerge",".csv"))
setkey(comp,known,set,ID)
## Known structure.
## comp[,`:=`(mz=mapply(calc_mz_from_smiles,SMILES,adduct,ID,USE.NAMES = F))]
comp[known=="structure",`:=`(mz=calc_mz_from_smiles(SMILES,adduct,ID))]
## Known formula.
comp[known=="formula",`:=`(mz=calc_mz_from_formula(Formula,adduct,ID))]
setnames(comp,names(COMP_NAME_MAP),
setcolorder(comp,COMP_NAME_FIRST)
tab2file(tab=comp,file=fn_out)
setkeyv(comp,c("set","tag","mz"))
m$out$tab$comp <- comp
verify_compounds <- function(conf) {
## * Existence of input files
fns_cmpds <- conf$compounds$lists
fn_cmpd_sets <- conf$compounds$sets
msg=paste("Cannot find the compound sets file:",fn_cmpd_sets))
for (fn in fns_cmpds) {
assert(isThingFile(fn), msg=paste("Cannot find compound list:",fn))
}
df_sets <- file2tab(fn_cmpd_sets)
all_sets<-unique(df_sets$set)
return(list(conf=conf,all_sets=all_sets))
}
verify_data_df <- function(mzml,all_sets) {
no_files <- which(mzml[,!file.exists(Files)])
no_adducts <- which(mzml[,!(adduct %in% names(ADDUCTMAP))])
no_sets <- which(mzml[,!(set %in% all_sets)])
assert(length(no_files)==0,msg = paste("Non-existent data files at rows:",paste(no_files,collapse = ',')))
assert(length(no_adducts)==0,msg = paste("Unrecognised adducts at rows:",paste(no_adducts,collapse = ',')))
assert(length(no_sets)==0,msg = paste("Unknown sets at rows:",paste(no_sets,collapse = ',')))
}
verify_data <- function(conf,all_sets) {
## * Existence of input files
fn_data <- conf$data
assert(isThingFile(fn_data),msg=paste("Data table does not exist:",fn_data))
mzml <- file2tab(fn_data)
verify_data_df(mzml=mzml,all_sets)
## Reads the concurrency entry in the config. It is optional, if
## not given, then it is up to the user to define the plan of the
## futures package. If present, it contains at least the `plan'
## specification. It can also contain `workers` entry specifying
## the number of workers. If that entry is absent, the default
## number of workers is NO_WORKERS from the resources.R.
workers <- m$conf$concurrency$workers
plan <- m$conf$concurrency$plan
if (!is.null(plan) && plan!=user) {
n <- if (!is.null(workers)) workers else NO_WORKERS
if (!is.na(n)) future::plan(plan,workers=workers) else future::plan(plan)
m$conf$concurrency$workers <- n
} else {
m$conf$concurrency$workers <- NA
m$conf$concurrency$plan <- "user"
}
message("plan: ",m$conf$concurrency$plan)
message("workers: ",m$conf$concurrency$workers)
## So we can actually debug.
m$future <- if (!m$conf$debug)
future::future
else {
message("Debug: futures evaluate as identity")
function(x,...) identity(x)
}
## Depending on units given when the user specified the errors,
## generate functions that calculate errors given the concrete
## mass.
## Mass errors can be either in ppm, or Da.
## Time errors in min, or s.
## The mass error calculation functions and the retention time
## error in minutes are in m$extr$tol.
## TODO make these things compatible with futures.
m$extr$tol$coarse <- gen_mz_err_f(m$conf$tolerance[["ms1 coarse"]],
"ms1 coarse error: Only ppm, or Da units allowed."
)
m$extr$tol$fine <- gen_mz_err_f(m$conf$tolerance[["ms1 fine"]],
"ms1 fine error: Only ppm, or Da units allowed.")
m$extr$tol$eic <- gen_mz_err_f(m$conf$tolerance$eic,
"eic error: Only ppm, or Da units allowed.")
m$extr$tol$rt <- gen_rt_err(m$conf$tolerance$rt,
"rt error: Only s(econds), or min(utes) allowed.")
## Reduce the comp table to only unique masses (this is because
## different sets can have same masses).
m$out$tab$data <- m$out$tab$comp[,head(.SD,1),by=c('adduct','tag','ID')]
m$out$tab$data[,set:=NULL] #This column is meaningless now.
files <- m$out$tab$data[,unique(Files)]
allCEs <- do.call(c,args=lapply(files,function(fn) {
z <- MSnbase::readMSData(files=fn,msLevel = c(1,2),mode="onDisk")
unique(MSnbase::collisionEnergy(z),fromLast=T)
}))
allCEs <- unique(allCEs)
allCEs <- allCEs[!is.na(allCEs)]
cols <-paste('CE',allCEs,sep = '')
vals <- rep(NA,length(cols))
m$out$tab$data[,(cols) := .(rep(NA,.N))]
files <- m$out$tab$data[,unique(Files)]
ftags <- m$out$tab$data[,.(tag=unique(tag)),by=Files]
futuref <- m$future
tmp <- lapply(1:nrow(ftags),function(ii) {
fn <- ftags[ii,Files]
tag <- ftags[ii,tag]
tab <- as.data.frame(data.table::copy(m$out$tab$data[,.(Files,adduct,mz,rt,ID)]))
## err_ms1_eic <- m$extr$tol$eic
## err_coarse_fun <- m$extr$tol$coarse
## err_fine_fun <- m$extr$tol$fine
## err_rt <- m$extr$tol$rt
err_coarse <- m$conf$tolerance[["ms1 coarse"]]
err_fine <- m$conf$tolerance[["ms1 fine"]]
err_ms1_eic <- m$conf$tolerance$eic
err_rt <- m$conf$tolerance$rt
x <- futuref(extract(fn=fn,
tab=tab,
err_ms1_eic=err_ms1_eic,
err_coarse = err_coarse,
err_fine= err_fine,
err_rt= err_rt),
lazy = T)
msk <- sapply(tmp,future::resolved)
curr_done <- which(msk)
for (x in curr_done) {
message("Done extraction for ", unique(future::value(tmp[[x]])$Files))
}
while (!all(msk)) {
msk <- sapply(tmp,future::resolved)
newly_done <- which(msk)
for (x in setdiff(newly_done,curr_done)) {
message("Done extraction for ", unique(future::value(tmp[[x]])$Files))
}
Sys.sleep(0.5)
curr_done <- newly_done
}
ztmp <- lapply(tmp,future::value)
## ## We need to add in Files (after futures are resolved).
## for (nn in 1:nrow(ftags)) {
## fn <- ftags[nn,Files]
## ztmp[[nn]]$Files <- fn
## }
m$extr$ms <- data.table::rbindlist(ztmp)
fn_ex <- get_fn_extr(m)
message('Saving extracted data to ', fn_ex)
saveRDS(object = m$extr, file = fn_ex)
message('Done saving extracted data.')
timetag <- format(Sys.time(), "%Y%m%d_%H%M%S")
saveRDS(object = m, file = file.path(m$conf$project,
paste0(timetag,"_",FN_EXTR_STATE)))
##' @export
conf_trans <- function(conf) {
conf$prescreen <- conf_trans_pres(conf$prescreen)
conf
}
##' @export
prescreen <- function(m) {
## Top-level auto prescreening function.
confpres <- conf_trans_pres(m$conf$prescreen)
## TODO need to fix max spec intensity
gen_ms2_spec_tab <- function(ms) {data.table::rbindlist(lapply(1:nrow(ms), function (nr) {
adduct <- ms$adduct[[nr]]
ID <- ms$ID[[nr]]
Files <- ms$Files[[nr]]
spec <- ms$spec[[nr]]
ms2_sel <- ms$ms2_sel[[nr]]
dt <- if (length(spec[[1]]) < 3)
dtable(CE=NA_real_,
rt=NA_real_,
spec=list(dtable(mz=NA_real_,intensity=NA_real_)),
ms2_sel=NA) else {
dtable(
CE=sapply(spec,
function (x) x$CE),
rt=sapply(spec,
function (x) x$rt),
spec=lapply(spec,
function (x) x$spec),
ms2_sel=F)
}
if (!is.na(ms2_sel)) dt$ms2_sel[[ms2_sel]] <- T
dt$Files <- Files
dt$ID <- ID
dt$adduct <- adduct
dt[,ms2_max_int := .(sapply(spec,function (sp) sp[,max(intensity)]))]
dt
}))}
gen_ms1_spec_tab <- function(ms) {
cols <- MS1_SPEC_COLS
ms[,..cols]
}
m$qa <- create_qa_table(m$extr$ms,confpres)
mms1 <- assess_ms1(m)
m <- assess_ms2(mms1)
fields <- c("Files","adduct","ID",QA_COLS)
m$out$tab$ms2_spec <- gen_ms2_spec_tab(m$qa$ms)
m$out$tab$ms1_spec <- gen_ms1_spec_tab(m$qa$ms)
m$out$tab$summ <- merge(m$out$tab$comp,m$qa$ms[,..fields],by=c("Files","adduct","ID"))
data.table::setkeyv(m$out$tab$ms2_spec,c("adduct","Files","ID"))
data.table::setkeyv(m$out$tab$ms1_spec,c("adduct","Files","ID"))
##' Sets the key specified by DEF_KEY_SUMM and adds second indices,
##' either from DEF_INDEX_SUMM, or user-specified in
##' conf[["summary table"]]$order. The order entry is a list of
##' strings with names of columns in summ, optionally prefixed with a
##' minus(-) sign. Columns prefixed with the minus are going to be in
##' ascending order.
##'
##' @title Sort the Summary Table
##' @param m
##' @return m
##' @author Todor Kondić
## Sorts the summary table (summ) in order specified either in
## `order spectra` sublist of m$conf, or if that is null, the
## DEF_INDEX_SUMM.
## Here set default sorting keys.
data.table::setkeyv(m$out$tab$summ,DEF_KEY_SUMM)
## Now, add secondary indexing.
cols <- if (!is.null(m$conf[["summary table"]]$order)) m$conf[["summary table"]]$order else DEF_INDEX_SUMM
idx <- gsub("^\\s*-\\s*","",cols) #We need only column names for
#now, so remove minuses where
#needed.
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
assertthat::assert_that(all(idx %in% colnames(m$out$tab$summ)),msg = "Some column(s) in order key in conf file does not exist in the summary table.")
data.table::setindexv(m$out$tab$summ,idx)
## Now we order based on either summary table order subkey, or
## DEF_ORDER_SUMM
tmp <- quote(data.table::setorder())
tmp[[2]] <- quote(m$out$tab$summ)
for (n in 1:length(cols)) tmp[[2+n]] <- parse(text=cols[[n]])[[1]]
message("Ordering expression: ",tmp)
eval(tmp) #Execute the setorder call
m
}
##' Subsets the summary table by applying conditions set out in the
##' filter subkey of summary table key of the config. Each member of
##' filter is an expression that and all of them are chained together
##' using AND logical operation and applied to the summary table.
##'
##'
##' @title Subset the Summary Table
##' @param m
##' @return m
##' @author Todor Kondić
##' @export
subset_summary <- function(m) {
filt <- m$conf[["summary table"]]$filter
m$out$tab$flt_summ <- if (!is.null(filt)) {
tmp <- lapply(filt, function (x) parse(text = x)[[1]])
expr <- Reduce(function (x,y) {z<-call("&");z[[2]]<-x;z[[3]]<-y;z},x=tmp)
message("Filtering with: ",deparse(bquote(m$out$tab$summ[.(expr)])))
eval(bquote(m$out$tab$summ[.(expr)]))
} else m$out$tab$summ
#' @export
create_plots <- function(m) {
## Produce plots of EICs and spectra and group them acording to
## conf$figures$grouping.
## Select the data nedeed for plotting.
x <- m$out$tab$flt_summ
message("Generate plot data.")
ms1_plot_data <- gen_base_ms1_plot_tab(summ=x,
ms1_spec=m$out$tab$ms1_spec)
ms2_plot_data <- gen_base_ms2_plot_tab(summ=x,
ms2_spec=m$out$tab$ms2_spec)
message("Done generating plot data.")
group_data <- m$conf$figures$grouping
plot_group <- if (!shiny::isTruthy(group_data$group)) FIG_DEF_CONF$grouping$group else group_data$group
plot_plot <- if (!shiny::isTruthy(group_data$plot)) FIG_DEF_CONF$grouping$plot else group_data$plot
plot_ms1_label <- if (!shiny::isTruthy(group_data$plot)) FIG_DEF_CONF$grouping$ms1_label else group_data$label
plot_ms2_label <- "CE"
message("plot_group: ",plot_group)
message("plot_plot: ",plot_plot)
message("plot_ms1_label: ",plot_ms1_label)
message("plot_ms2_label: ",plot_ms2_label)
plot_index <- c(plot_group,plot_plot)
## All the possible curve labels.
all_ms1_labels <- ms1_plot_data[,unique(.SD),.SDcols=plot_ms1_label][[plot_ms1_label]]
all_ms2_ce_labels <- ms2_plot_data[,unique(CE)]
## Plot styling.
style_eic_ms1 <- plot_decor(m,m$conf$logaxes$ms1_eic_int,
all_ms1_labels=all_ms1_labels,
legend_name_ms1=plot_ms1_label)
style_eic_ms2 <- plot_decor(m,m$conf$logaxes$ms2_eic_int,
all_ms1_labels = all_ms1_labels,
all_ms2_labels = all_ms2_ce_labels,
legend_name_ms1 = plot_ms1_label,
legend_name_ms2 = "CE")
style_spec_ms2 <- plot_decor(m,m$conf$logaxes$ms2_spec_int,
all_ms1_labels = all_ms1_labels,
all_ms2_labels = all_ms2_ce_labels,
legend_name_ms1 = plot_ms1_label,
legend_name_ms2 = "CE")
message("Create MS1 EIC plots.")
## Generate MS1 EIC plots.
ms1_plot <- ms1_plot_data[,.(fig_eic={
df <- .SD[,data.table::rbindlist(Map(function (a,b,c,d) {
s <- a[[1]]
s$plot_label <- b
s$rt_peak <- c
s$mz <- d
s},
eicMS1,
.SD[[..plot_ms1_label]],
rt_peak,
mz))]
list(plot_eic_ms1(df,style_fun = style_eic_ms1,
plot_label = ..plot_ms1_label))
}),by = plot_index]
m$out$tab$ms1_plot <- ms1_plot
message("Done creating MS1 EIC plots.")
## Generate MS2 EIC plots.
message("Create MS2 EIC plots.")
ms2_plot_data[,parent_label:=factor(.SD[[1]]),.SDcols=plot_ms1_label]
ms2_plot_data[,plot_label:=factor(CE)]
ms2_plot <- ms2_plot_data[,
.(fig_eic=list(plot_eic_ms2(df=.SD,
style_fun = style_eic_ms2)),
fig_spec=list(plot_spec_ms2(df=.SD,
style_fun = style_spec_ms2))),
.SDcols=c("rt_peak","int_peak",
plot_ms1_label,
"parent_label",
"plot_label",
"spec",
"ms2_sel",
"mz"),
by = plot_index]
message("Done creating MS1 EIC plots.")
## Generate structure plots.
structab <- ms1_plot_data[,.(ID=unique(ID))]
structab <- m$out$tab$comp[known=="structure",][structab,.(ID=i.ID,SMILES=SMILES),on="ID",nomatch=NULL,mult="first"]
message("Start generating structures.")
structab[,structimg:=.({tmp <- lapply(SMILES,function (sm) smiles2img(sm,width = 500,height = 500, zoom = 4.5))
tmp})]
message("Done generating structures.")
## We need to check if we have multiplots grouped by ID in order
## for structure generation to make sense.
if (plot_plot == "ID") {
ms1_plot <- structab[ms1_plot,on="ID"][,c("fig_struct") := .(Map(function (st,eic) {
df <- eic[[1]]$data
ddf <- dtable(x=df$rt,
y=df$intensity)
ggplot2::ggplot(ddf) +
ggplot2::geom_blank() +
ggplot2::annotation_custom(st) +
ggplot2::theme_void()
},
structimg,
fig_eic))]
ms1_plot[,structimg:=NULL]
}
m$out$tab$ms2_plot <- ms2_plot
m$out$tab$ms1_plot <- ms1_plot
m
}
#' @export
save_plots <- function(m) {
topdir <- FIG_TOPDIR
dir.create(topdir,showWarnings = F)
rt_lim <- DEFAULT_RT_RANGE
if (isTruthy(m$conf$figures$rt_min)) rt_lim[[1]] <- rt_in_min(m$conf$figures$rt_min)
if (isTruthy(m$conf$figures$rt_max)) rt_lim[[2]] <- rt_in_min(m$conf$figures$rt_max)
my_theme <- function(...) ggplot2::theme(legend.position = "none",...)
clean_range<-function(def,rng) {
x1 <- rng[1]
x2 <- rng[2]
if (is.na(x1) || x1 == 0) x1 <- def[1]
if (is.na(x2) || x2 == 0) x2 <- def[2]
c(x1,x2)
}
grouping <- m$conf$figures$grouping
plot_group <- grouping$group
plot_plot <- grouping$plot
plot_ms1_label <- grouping$ms1_label
plot_ms2_label <- grouping$ms2_label
groups <- m$out$tab$ms1_plot[,unique(.SD[[1]]),.SDcols=plot_group]
for (s in groups) {
sdf <- m$out$tab$flt_summ[.SD[[1]]==s,.SDcols=plot_group]
plot_group <- sdf[,unique(.SD[[1]]),.SDcols=plot_plot]
for (g in plot_group) {
asdf <- sdf[.SD[[1]]==g,.SDcols=plot_plot]
ids <- asdf[,unique(ID)]
for (id in ids) {
message("Image ","set: ",s," group: ", g, " id: ",id)
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
tab <- asdf[ID==id,.(tag,ms1_int,ms1_rt,adduct,mz)]
ms1_figs <- m$out$tab$ms1_plot_eic[set==s & adduct==g & ID==id,.(fig,structfig)]
ms2_figs <- m$out$tab$ms2_plot[set==s & adduct==g & ID==id,.(fig_eic,fig_spec)]
ms1_eic <- ms1_figs$fig[[1]]
rt_rng <- range(ms1_eic$data[,rt])
if (!is.na(rt_lim[[1]])) rt_rng[[1]] <- rt_lim[[1]]
if (!is.na(rt_lim[[2]])) rt_rng[[2]] <- rt_lim[[2]]
my_coord <- ggplot2::coord_cartesian(xlim = rt_rng)
ms2_eic <- ms2_figs$fig_eic[[1]]+my_coord #ggplot2::coord_cartesian(xlim = rt_rng)
ms2_spec <- ms2_figs$fig_spec[[1]]
xxdf <- ms1_figs$fig[[1]]$data[,.(rt=rt,intensity=intensity)]
empty_fig <- ggplot2::ggplot(xxdf,ggplot2::aes(x=rt,y=intensity)) +
ggplot2::geom_blank() +
ggplot2::theme_void()
## if (id == 1078) browser()
if (NROW(ms2_eic$data) == 0) ms2_eic <- empty_fig
if (NROW(ms2_spec$data) == 0) ms2_spec <- empty_fig
leg <- cowplot::get_legend(ms1_eic)
big_fig <- cowplot::plot_grid(ms1_eic+my_theme(),
ms1_figs$structfig[[1]],
ms2_eic+my_theme(),
empty_fig,
ms2_spec+my_theme(),leg,
align = "hv",
axis='l',
ncol = 2,
nrow = 3,
rel_widths = c(2,1))
ggplot2::ggsave(plot=big_fig,filename = fig_path(top=topdir,
set=s,
group=g,
id=id,
suff="all"))
}
}
}
m
}
#' @export
report <- function(m) {
figtopdir <- FIG_TOPDIR #file.path(m$conf$project,FIG_TOPDIR)
pander::evalsOptions("graph.output","pdf")
author <- if (!is.null(m$conf$report$author)) m$conf$report$author else REPORT_AUTHOR
title <- if (!is.null(m$conf$report$title)) m$conf$report$title else REPORT_TITLE
doc <- pander::Pandoc$new(author,title)
doc$add(pander::pandoc.header.return("Plots",level = 1))
sets <- m$out$tab$flt_summ[,unique(set)]
rep_theme <- ggplot2::labs(title = NULL)
for (s in sets) {
doc$add(pander::pandoc.header.return(paste('Set', s), level = 2))
sdf <- m$out$tab$flt_summ[set==s,]
group <- sdf[,unique(adduct)]
for (g in group) {
asdf <- sdf[adduct==g,]
ids <- asdf[,unique(ID)]
for (id in ids) {
message("Image ","set: ",s," group: ", g, " id: ",id)
doc$add(pander::pandoc.header.return(paste('ID',id),level = 3))
tab <- asdf[ID==id,.(tag,ms1_int,ms1_rt,adduct,mz,Files)]
ms2info <- m$out$tab$ms2_spec[adduct==g & ID==id,.(Files,ID,rt,ms2_max_int)]
tab2 <- tab[ms2info,on="Files"][,.(tag,mz,adduct,"$RT_{ms1}$[min]"=ms1_rt,"$RT_{ms2}$[min]"=rt,"$I{ms1}$"=formatC(ms1_int, format="e",digits = 2), "$I(ms2)$"= formatC(ms2_max_int, format="e",digits = 2))]
data.table::setorderv(tab2,c("$I{ms1}$","$I(ms2)$"),c(-1,-1))
doc$add.paragraph("")
figpath <- fig_path(top=figtopdir,set=s,group=g,id=id,suff="all",ext="pdf")
doc$add(pander::pandoc.image.return(img=paste0("file:",figpath)))
doc$add.paragraph("")
message("Adding table.")
doc$add.paragraph(pander::pandoc.table.return(tab2))
message("Done adding table.")
## doc$add(print(tab))
doc$add.paragraph("")
}
}
}
doc$add(pander::pandoc.header.return("Appendix", level = 1))
doc$add(pander::pandoc.header.return("Configuration",level = 2))
doc$add(m$conf)
doc$add(pander::pandoc.header.return("R Session Info",level = 2))
doc$add(sessionInfo())
m$out$report <- doc
m$out$report$export('report.pdf')
m
}
#' @export
app <- function() {
unlink(list.files(pattern = "app_run.*html$"))
unlink(list.files(pattern = "app_run.*Rmd$"))
file.copy(system.file(file.path("rmd","app.Rmd"),package = "shinyscreen"),"app_run.Rmd")
rmarkdown::run(file = "app_run.Rmd")
}