Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
### License Info
This program is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.
Please check <http://www.gnu.org/licenses/>.
The code included in the present notebook is based on this
[script](https://git-r3lab.uni.lu/computational-modelling-and-simulation/generegulationanalysis/-/blob/master/5_SBMLSearch/SourceCode/grep_disease_map.R)
developed by Yusuke Hiki
Introduction
============
The present script takes the output of our Footprint-based analysis and
matches the results againts the content of [the Covid-19 Disease
Maps](https://covid.pages.uni.lu/map_contents)
library(kableExtra)
Results
=======
Reading Input files
-------------------
We first read the content ofthe Covid-19 Disease Maps which can be found
in this
[file](https://gitlab.lcsb.uni.lu/covid/models/-/blob/master/Resources/Expand%20the%20diagrams/COVID19_Disease_Map_bipartite_crosslinked_additional_HGNCs.tsv):
disease_map <- read.delim("https://gitlab.lcsb.uni.lu/covid/models/-/raw/master/Resources/Expand%20the%20diagrams/COVID19_Disease_Map_bipartite_crosslinked_additional_HGNCs.tsv")
# Extract row with HGNC symbol
disease_map_hgnc <- disease_map[ !is.na( disease_map$source_hgnc ), ]
# Get HGNC symbol list for each row
disease_map_gene_list <- strsplit( x=gsub( pattern="HGNC_SYMBOL:", replacement="", x=disease_map_hgnc$source_hgnc ), split=";" )
We then read the output of our Footprint-based analyisis, namely
CARNIVAL's output network. This file can be found
[here](https://gitlab.lcsb.uni.lu/computational-modelling-and-simulation/footprint-based-analysis-and-causal-network-contextualisation-in-sars-cov-2-infected-a549-cell-line/-/tree/master/Carnival_Results).
carnival_results <- readRDS("InputFiles/carnival_results_withprogeny.rds")
carnival_nodes_hgnc <- unique(c(carnival_results$weightedSIF[,"Node1"], carnival_results$weightedSIF[,"Node2"]))
Matching the results
--------------------
We finally match all our genes from the carnival network with all the
genes from the different pathways included in the COVID19 Disease maps.
disease_map_hgnc_carnival_detected <- data.frame()
for( current_gene in carnival_nodes_hgnc){
# Get row index of disease map matched with target gene
index_matched <- which( unlist( lapply( X=disease_map_gene_list, FUN=function(x){ return( any(current_gene==x) ) } ) ) )
# Extract the row
if( length( index_matched ) != 0 ){
disease_map_hgnc_carnival_detected_i <- cbind( disease_map_hgnc[ index_matched, ], hgnc_carnival=current_gene )
disease_map_hgnc_carnival_detected <- rbind( disease_map_hgnc_carnival_detected, disease_map_hgnc_carnival_detected_i )
}
}
disease_map_hgnc_carnival_detected <- unique( disease_map_hgnc_carnival_detected[ ,c("source_diagram", "hgnc_carnival") ] )
rownames(disease_map_hgnc_carnival_detected) <- NULL
and We visualize the results.
disease_map_hgnc_carnival_detected %>%
kbl(col.names = c("Covid19 DM Diagram", "Carnival nodes")) %>%
kable_styling()
<table class="table" style="margin-left: auto; margin-right: auto;">
<thead>
<tr>
<th style="text-align:left;">
Covid19 DM Diagram
</th>
<th style="text-align:left;">
Carnival nodes
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:left;">
C19DMap:PAMP signalling
</td>
<td style="text-align:left;">
TICAM1
</td>
</tr>
<tr>
<td style="text-align:left;">
C19DMap:Orf3a protein interactions
</td>
<td style="text-align:left;">
TICAM1
</td>
</tr>
<tr>
<td style="text-align:left;">
C19DMap:TGFbeta signalling
</td>
<td style="text-align:left;">
MAPK3
</td>
</tr>
<tr>
<td style="text-align:left;">
C19DMap:Interferon 1 pathway
</td>
<td style="text-align:left;">
TBK1
</td>
</tr>
<tr>
<td style="text-align:left;">
C19DMap:PAMP signalling
</td>
<td style="text-align:left;">
TBK1
</td>
</tr>
<tr>
<td style="text-align:left;">
C19DMap:Pyrimidine deprivation
</td>
<td style="text-align:left;">
TBK1
</td>
</tr>
<tr>
<td style="text-align:left;">
C19DMap:Interferon lambda pathway
</td>
<td style="text-align:left;">
TBK1
</td>
</tr>
<tr>
<td style="text-align:left;">
C19DMap:Endoplasmatic Reticulum stress
</td>
<td style="text-align:left;">
ATF6
</td>
</tr>
<tr>
<td style="text-align:left;">
C19DMap:Interferon 1 pathway
</td>
<td style="text-align:left;">
IKBKE
</td>
</tr>
<tr>
<td style="text-align:left;">
C19DMap:PAMP signalling
</td>
<td style="text-align:left;">
IKBKE
</td>
</tr>
<tr>
<td style="text-align:left;">
C19DMap:TGFbeta signalling
</td>
<td style="text-align:left;">
SMAD1
</td>
</tr>
<tr>
<td style="text-align:left;">
C19DMap:Endoplasmatic Reticulum stress
</td>
<td style="text-align:left;">
ATF4
</td>
</tr>
<tr>
<td style="text-align:left;">
C19DMap:Endoplasmatic Reticulum stress
</td>
<td style="text-align:left;">
MBTPS1
</td>
</tr>
<tr>
<td style="text-align:left;">
C19DMap:Interferon 1 pathway
</td>
<td style="text-align:left;">
IRF3
</td>
</tr>
<tr>
<td style="text-align:left;">
C19DMap:PAMP signalling
</td>
<td style="text-align:left;">
IRF3
</td>
</tr>
<tr>
<td style="text-align:left;">
C19DMap:Pyrimidine deprivation
</td>
<td style="text-align:left;">
IRF3
</td>
</tr>
<tr>
<td style="text-align:left;">
C19DMap:Interferon lambda pathway
</td>
<td style="text-align:left;">
IRF3
</td>
</tr>
</tbody>
</table>
Session Info Details
====================
## R version 4.0.4 (2021-02-15)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19042)
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=English_Germany.1252 LC_CTYPE=English_Germany.1252
## [3] LC_MONETARY=English_Germany.1252 LC_NUMERIC=C
## [5] LC_TIME=English_Germany.1252
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] kableExtra_1.3.4
##
## loaded via a namespace (and not attached):
## [1] rstudioapi_0.13 knitr_1.33 xml2_1.3.2 magrittr_2.0.1
## [5] rvest_1.0.0 munsell_0.5.0 colorspace_2.0-1 viridisLite_0.4.0
## [9] R6_2.5.1 rlang_0.4.11 highr_0.9 stringr_1.4.0
## [13] httr_1.4.2 tools_4.0.4 webshot_0.5.2 xfun_0.24
## [17] htmltools_0.5.1.1 systemfonts_1.0.2 yaml_2.2.1 digest_0.6.27
## [21] lifecycle_1.0.1 glue_1.4.2 evaluate_0.14 rmarkdown_2.9
## [25] stringi_1.6.2 compiler_4.0.4 scales_1.1.1 svglite_2.1.0