### License Info This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Please check <http://www.gnu.org/licenses/>. The code included in the present notebook is based on this [script](https://git-r3lab.uni.lu/computational-modelling-and-simulation/generegulationanalysis/-/blob/master/5_SBMLSearch/SourceCode/grep_disease_map.R) developed by Yusuke Hiki Introduction ============ The present script takes the output of our Footprint-based analysis and matches the results againts the content of [the Covid-19 Disease Maps](https://covid.pages.uni.lu/map_contents) library(kableExtra) Results ======= Reading Input files ------------------- We first read the content ofthe Covid-19 Disease Maps which can be found in this [file](https://gitlab.lcsb.uni.lu/covid/models/-/blob/master/Resources/Expand%20the%20diagrams/COVID19_Disease_Map_bipartite_crosslinked_additional_HGNCs.tsv): disease_map <- read.delim("https://gitlab.lcsb.uni.lu/covid/models/-/raw/master/Resources/Expand%20the%20diagrams/COVID19_Disease_Map_bipartite_crosslinked_additional_HGNCs.tsv") # Extract row with HGNC symbol disease_map_hgnc <- disease_map[ !is.na( disease_map$source_hgnc ), ] # Get HGNC symbol list for each row disease_map_gene_list <- strsplit( x=gsub( pattern="HGNC_SYMBOL:", replacement="", x=disease_map_hgnc$source_hgnc ), split=";" ) We then read the output of our Footprint-based analyisis, namely CARNIVAL's output network. This file can be found [here](https://gitlab.lcsb.uni.lu/computational-modelling-and-simulation/footprint-based-analysis-and-causal-network-contextualisation-in-sars-cov-2-infected-a549-cell-line/-/tree/master/Carnival_Results). carnival_results <- readRDS("InputFiles/carnival_results_withprogeny.rds") carnival_nodes_hgnc <- unique(c(carnival_results$weightedSIF[,"Node1"], carnival_results$weightedSIF[,"Node2"])) Matching the results -------------------- We finally match all our genes from the carnival network with all the genes from the different pathways included in the COVID19 Disease maps. disease_map_hgnc_carnival_detected <- data.frame() for( current_gene in carnival_nodes_hgnc){ # Get row index of disease map matched with target gene index_matched <- which( unlist( lapply( X=disease_map_gene_list, FUN=function(x){ return( any(current_gene==x) ) } ) ) ) # Extract the row if( length( index_matched ) != 0 ){ disease_map_hgnc_carnival_detected_i <- cbind( disease_map_hgnc[ index_matched, ], hgnc_carnival=current_gene ) disease_map_hgnc_carnival_detected <- rbind( disease_map_hgnc_carnival_detected, disease_map_hgnc_carnival_detected_i ) } } disease_map_hgnc_carnival_detected <- unique( disease_map_hgnc_carnival_detected[ ,c("source_diagram", "hgnc_carnival") ] ) rownames(disease_map_hgnc_carnival_detected) <- NULL and We visualize the results. disease_map_hgnc_carnival_detected %>% kbl(col.names = c("Covid19 DM Diagram", "Carnival nodes")) %>% kable_styling() <table class="table" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:left;"> Covid19 DM Diagram </th> <th style="text-align:left;"> Carnival nodes </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> C19DMap:PAMP signalling </td> <td style="text-align:left;"> TICAM1 </td> </tr> <tr> <td style="text-align:left;"> C19DMap:Orf3a protein interactions </td> <td style="text-align:left;"> TICAM1 </td> </tr> <tr> <td style="text-align:left;"> C19DMap:TGFbeta signalling </td> <td style="text-align:left;"> MAPK3 </td> </tr> <tr> <td style="text-align:left;"> C19DMap:Interferon 1 pathway </td> <td style="text-align:left;"> TBK1 </td> </tr> <tr> <td style="text-align:left;"> C19DMap:PAMP signalling </td> <td style="text-align:left;"> TBK1 </td> </tr> <tr> <td style="text-align:left;"> C19DMap:Pyrimidine deprivation </td> <td style="text-align:left;"> TBK1 </td> </tr> <tr> <td style="text-align:left;"> C19DMap:Interferon lambda pathway </td> <td style="text-align:left;"> TBK1 </td> </tr> <tr> <td style="text-align:left;"> C19DMap:Endoplasmatic Reticulum stress </td> <td style="text-align:left;"> ATF6 </td> </tr> <tr> <td style="text-align:left;"> C19DMap:Interferon 1 pathway </td> <td style="text-align:left;"> IKBKE </td> </tr> <tr> <td style="text-align:left;"> C19DMap:PAMP signalling </td> <td style="text-align:left;"> IKBKE </td> </tr> <tr> <td style="text-align:left;"> C19DMap:TGFbeta signalling </td> <td style="text-align:left;"> SMAD1 </td> </tr> <tr> <td style="text-align:left;"> C19DMap:Endoplasmatic Reticulum stress </td> <td style="text-align:left;"> ATF4 </td> </tr> <tr> <td style="text-align:left;"> C19DMap:Endoplasmatic Reticulum stress </td> <td style="text-align:left;"> MBTPS1 </td> </tr> <tr> <td style="text-align:left;"> C19DMap:Interferon 1 pathway </td> <td style="text-align:left;"> IRF3 </td> </tr> <tr> <td style="text-align:left;"> C19DMap:PAMP signalling </td> <td style="text-align:left;"> IRF3 </td> </tr> <tr> <td style="text-align:left;"> C19DMap:Pyrimidine deprivation </td> <td style="text-align:left;"> IRF3 </td> </tr> <tr> <td style="text-align:left;"> C19DMap:Interferon lambda pathway </td> <td style="text-align:left;"> IRF3 </td> </tr> </tbody> </table> Session Info Details ==================== ## R version 4.0.4 (2021-02-15) ## Platform: x86_64-w64-mingw32/x64 (64-bit) ## Running under: Windows 10 x64 (build 19042) ## ## Matrix products: default ## ## locale: ## [1] LC_COLLATE=English_Germany.1252 LC_CTYPE=English_Germany.1252 ## [3] LC_MONETARY=English_Germany.1252 LC_NUMERIC=C ## [5] LC_TIME=English_Germany.1252 ## ## attached base packages: ## [1] stats graphics grDevices utils datasets methods base ## ## other attached packages: ## [1] kableExtra_1.3.4 ## ## loaded via a namespace (and not attached): ## [1] rstudioapi_0.13 knitr_1.33 xml2_1.3.2 magrittr_2.0.1 ## [5] rvest_1.0.0 munsell_0.5.0 colorspace_2.0-1 viridisLite_0.4.0 ## [9] R6_2.5.1 rlang_0.4.11 highr_0.9 stringr_1.4.0 ## [13] httr_1.4.2 tools_4.0.4 webshot_0.5.2 xfun_0.24 ## [17] htmltools_0.5.1.1 systemfonts_1.0.2 yaml_2.2.1 digest_0.6.27 ## [21] lifecycle_1.0.1 glue_1.4.2 evaluate_0.14 rmarkdown_2.9 ## [25] stringi_1.6.2 compiler_4.0.4 scales_1.1.1 svglite_2.1.0