Skip to content
Snippets Groups Projects
Unverified Commit ecf802e1 authored by Miroslav Kratochvil's avatar Miroslav Kratochvil :bicyclist: Committed by GitHub
Browse files

Merge pull request #438 from LCSB-BioCore/mo-more-modifications

Update modifications
parents 07cb13f7 95381a03
No related branches found
No related tags found
No related merge requests found
Showing
with 261 additions and 25 deletions
......@@ -70,7 +70,7 @@ dict_soln = flux_balance_analysis_dict(
change_objective("R_BIOMASS_Ecoli_core_w_GAM"),
## this fixes a specific rate of the glucose exchange
change_constraint("R_EX_glc__D_e", -12, -12),
change_constraint("R_EX_glc__D_e"; lb = -12, ub = -12),
## this knocks out two genes, i.e. constrains their associated reactions to zero.
knockout(["b0978", "b0734"]), ## the gene IDs are cytochrome oxidase (CYTBD)
......@@ -103,8 +103,8 @@ fva_mins, fva_maxs = flux_variability_analysis_dict(
bounds = objective_bounds(0.99), # the objective function is allowed to vary by ~1% from the FBA optimum
modifications = [
change_optimizer_attribute("IPM_IterationsLimit", 500),
change_constraint("R_EX_glc__D_e", -10, -10),
change_constraint("R_EX_o2_e", 0.0, 0.0),
change_constraint("R_EX_glc__D_e"; lb = -10, ub = -10),
change_constraint("R_EX_o2_e"; lb = 0.0, ub = 0.0),
],
)
......@@ -128,8 +128,8 @@ vs = flux_variability_analysis(
bounds = objective_bounds(0.50), # biomass can vary up to 50% less than optimum
modifications = [
change_optimizer_attribute("IPM_IterationsLimit", 500),
change_constraint("R_EX_glc__D_e", -10, -10),
change_constraint("R_EX_o2_e", 0.0, 0.0),
change_constraint("R_EX_glc__D_e"; lb = -10, ub = -10),
change_constraint("R_EX_o2_e"; lb = 0.0, ub = 0.0),
],
ret = m ->
(COBREXA.JuMP.objective_value(m), COBREXA.JuMP.value(m[:x][biomass_idx])), # m is the model and m[:x] extracts the fluxes from the model
......@@ -153,7 +153,7 @@ dict_soln = parsimonious_flux_balance_analysis_dict(
OSQP.Optimizer;
modifications = [
silence, # silence the optimizer (OSQP is very verbose by default)
change_constraint("R_EX_glc__D_e", -12, -12),
change_constraint("R_EX_glc__D_e"; lb = -12, ub = -12),
],
)
......@@ -168,7 +168,7 @@ vec_soln = parsimonious_flux_balance_analysis_vec(
model,
Tulip.Optimizer; # start with Tulip
modifications = [
change_constraint("R_EX_glc__D_e", -12, -12),
change_constraint("R_EX_glc__D_e"; lb = -12, ub = -12),
change_optimizer_attribute("IPM_IterationsLimit", 500), # we may change Tulip-specific attributes here
],
qp_modifications = [
......@@ -176,3 +176,97 @@ vec_soln = parsimonious_flux_balance_analysis_vec(
silence, # and make it quiet.
],
)
# ## Flux balance analysis with molecular crowding (FBAwMC)
# Flux balance with molecular crowding incorporates enzyme capacity constraints into the
# classic flux balance analysis algorithm. Essentially, an extra constraint is added to
# the optimization problem: `∑ wᵢ × vᵢ ≤ 1` where `wᵢ` weights each internal flux `vᵢ`. See
# `Beg, Qasim K., et al. "Intracellular crowding defines the mode and sequence of
# substrate uptake by Escherichia coli and constrains its metabolic activity." Proceedings of
# the National Academy of Sciences 104.31 (2007): 12663-12668.` for more details.
# First load the model
model = load_model("e_coli_core.json")
# Next, simulate the model over a range of substrate uptake rates.
without_crowding = Dict{Float64,Vector{Float64}}()
with_crowding = Dict{Float64,Vector{Float64}}()
glucose_uptakes = collect(-(1.0:0.5:20))
for glc in glucose_uptakes
no_crowding = flux_balance_analysis_dict( # classic FBA
model,
Tulip.Optimizer;
modifications = [
change_optimizer_attribute("IPM_IterationsLimit", 1000),
change_constraint("EX_glc__D_e"; lb = glc),
],
)
without_crowding[glc] =
[no_crowding["BIOMASS_Ecoli_core_w_GAM"], no_crowding["EX_ac_e"]]
crowding = flux_balance_analysis_dict( # FBAwMC
model,
Tulip.Optimizer;
modifications = [
change_optimizer_attribute("IPM_IterationsLimit", 1000),
add_crowding_constraint(0.004), # crowding constraint gets added here
change_constraint("EX_glc__D_e"; lb = glc),
],
)
with_crowding[glc] = [crowding["BIOMASS_Ecoli_core_w_GAM"], crowding["EX_ac_e"]]
end
# Finally, plot the results to compare classic FBA with FBAwMC.
using CairoMakie
fig = Figure();
ax1 = Axis(fig[1, 1]);
lines!(
ax1,
-glucose_uptakes,
[without_crowding[glc][1] for glc in glucose_uptakes],
label = "no crowding",
linewidth = 5,
linestyle = :dash,
)
lines!(
ax1,
-glucose_uptakes,
[with_crowding[glc][1] for glc in glucose_uptakes],
label = "with crowding",
linewidth = 5,
linestyle = :dot,
)
ax1.ylabel = "Growth rate [1/h]"
ax2 = Axis(fig[2, 1])
lines!(
ax2,
-glucose_uptakes,
[without_crowding[glc][2] for glc in glucose_uptakes],
label = "no crowding",
linewidth = 5,
linestyle = :dash,
)
lines!(
ax2,
-glucose_uptakes,
[with_crowding[glc][2] for glc in glucose_uptakes],
label = "with crowding",
linewidth = 5,
linestyle = :dot,
)
fig[1:2, 2] = Legend(fig, ax1, "Constraint")
ax2.xlabel = "Glucose uptake rate [mmol/gDW/h]"
ax2.ylabel = "Acetate production rate\n[mmol/gDW/h]"
fig
# Notice that overflow metabolism is modeled by incorporating the crowding constraint.
#md # !!! tip "Tip: code your own modification like [`add_crowding`](@ref)"
#md # Making custom problem modification functions is really simple due to the
#md # tight intergration between COBREXA and JuMP. Look at the source code for
#md # the implemented modifications in `src\analysis\modifications` to get a flavour
#md # for it.
......@@ -46,8 +46,8 @@ fluxes = flux_balance_analysis_dict(
Tulip.Optimizer;
modifications = [
change_objective("BIOMASS_Ecoli_core_w_GAM"),
change_constraint("EX_glc__D_e", -12, -12),
change_constraint("EX_o2_e", 0, 0),
change_constraint("EX_glc__D_e"; lb = -12, ub = -12),
change_constraint("EX_o2_e"; lb = 0, ub = 0),
],
)
......
......@@ -32,8 +32,8 @@ dict_sol = flux_balance_analysis_dict(
Tulip.Optimizer;
modifications = [
change_objective("R_BIOMASS_Ecoli_core_w_GAM"),
change_constraint("R_EX_glc__D_e", -12, -12),
change_constraint("R_EX_o2_e", 0, 0),
change_constraint("R_EX_glc__D_e"; lb = -12, ub = -12),
change_constraint("R_EX_o2_e"; lb = 0, ub = 0),
],
)
......
......@@ -125,8 +125,8 @@ mins, maxs = flux_variability_analysis_dict(
bounds = objective_bounds(0.99),
modifications = [
change_optimizer_attribute("IPM_IterationsLimit", 500),
change_constraint("EX_glc__D_e", -10, -10),
change_constraint("EX_o2_e", 0.0, 0.0),
change_constraint("EX_glc__D_e"; lb = -10, ub = -10),
change_constraint("EX_o2_e"; lb = 0, ub = 0),
],
)
```
......
"""
add_crowding_constraint(weights::Dict{Int64, Float64})
Adds a molecular crowding constraint to the optimization problem: `∑ wᵢ × vᵢ ≤ 1` where `wᵢ`
is a weight and `vᵢ` is a flux index in the model's reactions specified in `weights` as `vᵢ
=> wᵢ` pairs.
See Beg, Qasim K., et al. "Intracellular crowding defines the mode and sequence of
substrate uptake by Escherichia coli and constrains its metabolic activity." Proceedings of
the National Academy of Sciences 104.31 (2007) for more details.
"""
add_crowding_constraint(weights::Dict{Int64,Float64}) =
(model, opt_model) -> begin
idxs = collect(keys(weights)) # order of keys and values is the same
ws = values(weights)
# since fluxes can be positive or negative, need absolute value: ∑ wᵢ × |vᵢ| ≤ 1
# introduce slack variables to handle this
@variable(opt_model, crowding_slack[1:length(weights)])
@constraint(opt_model, crowding_slack .>= opt_model[:x][idxs])
@constraint(opt_model, crowding_slack .>= -opt_model[:x][idxs])
@constraint(opt_model, sum(w * crowding_slack[i] for (i, w) in enumerate(ws)) <= 1)
end
"""
add_crowding_constraint(weight::Float64; kwargs)
Variant of [`add_crowding_constraint`](@ref) that takes a single weight and assigns it to
each internal reaction flux, where internal reactions are identified with
[`find_internal_reactions`](@ref) and `kwargs` are passed to this function.
"""
add_crowding_constraint(weight::Float64; kwargs...) =
(model, opt_model) -> begin
idxs = find_internal_reactions(model; kwargs...)
add_crowding_constraint(Dict(zip(idxs, fill(weight, length(idxs)))))(
model,
opt_model,
)
end
"""
add_crowding_constraint(weights::Dict{String, Float64})
Variant of [`add_crowding_constraint`](@ref) that takes a dictinary of reactions `ids`
instead of reaction indices mapped to weights.
"""
add_crowding_constraint(weights::Dict{String,Float64}) =
(model, opt_model) -> begin
idxs = indexin(keys(weights), reactions(model))
nothing in idxs && throw(ArgumentError("Reaction id not found in model."))
add_crowding_constraint(Dict(zip(Int.(idxs), values(weights))))(model, opt_model)
end
......@@ -13,11 +13,11 @@ constrain_objective_value(tolerance) =
end
"""
change_constraint(id::String, lb, ub)
change_constraint(id::String; lb=nothing, ub=nothing)
Change the lower and upper bounds (`lb` and `ub` respectively) of reaction `id`.
Change the lower and upper bounds (`lb` and `ub` respectively) of reaction `id` if supplied.
"""
change_constraint(id::String, lb, ub) =
change_constraint(id::String; lb = nothing, ub = nothing) =
(model, opt_model) -> begin
ind = first(indexin([id], reactions(model)))
isnothing(ind) && throw(DomainError(id, "No matching reaction was found."))
......
......@@ -79,6 +79,7 @@ function looks_like_biomass_reaction(
any(occursin(x, rxn_id) for x in biomass_strings) &&
!(exclude_exchanges && any(startswith(rxn_id, x) for x in exchange_prefixes))
end
"""
find_biomass_reactions(m::MetabolicModel; kwargs...)
......@@ -97,6 +98,66 @@ forwarded to [`looks_like_biomass_reaction`](@ref).
find_biomass_reaction_ids(m::MetabolicModel; kwargs...) =
filter(id -> looks_like_biomass_reaction(id, kwargs...), reactions(m))
"""
looks_like_internal_reaction(
rxn_id::String;
exchange_prefixes = _constants.exchange_prefixes,
biomass_strings = _constants.biomass_strings,
)::Bool
A predicate that matches reaction identifiers that look like
internal reactions, i.e. reactions that are neither exchange nor biomass reactions.
Exchange reactions are identified based on matching prefixes in
the set `exchange_prefixes` and biomass reactions are identified by looking for
occurences of `biomass_strings` in the reaction id.
Also see [`find_internal_reactions`](@ref).
# Example
```
findall(looks_like_internal_reaction, reactions(model)) # returns indices
filter(looks_like_internal_reaction, reactions(model)) # returns Strings
# to use the optional arguments you need to expand the function's arguments
# using an anonymous function
findall(x -> looks_like_internal_reaction(x; exchange_prefixes=["EX_", "R_EX_"]), reactions(model)) # returns indices
filter(x -> looks_like_internal_reaction(x; exchange_prefixes=["EX_", "R_EX_"]), reactions(model)) # returns Strings
```
"""
function looks_like_internal_reaction(
rxn_id::String;
exchange_prefixes = _constants.exchange_prefixes,
biomass_strings = _constants.biomass_strings,
)::Bool
!looks_like_biomass_reaction(
rxn_id;
exchange_prefixes = exchange_prefixes,
biomass_strings = biomass_strings,
) &&
!looks_like_exchange_reaction(
rxn_id;
exchange_prefixes = exchange_prefixes,
biomass_strings = biomass_strings,
)
end
"""
find_internal_reactions(m::MetabolicModel; kwargs...)
Shortcut for finding internal reaction indices in a model; arguments are
forwarded to [`looks_like_internal_reaction`](@ref).
"""
find_internal_reactions(m::MetabolicModel; kwargs...) =
findall(id -> looks_like_internal_reaction(id; kwargs...), reactions(m))
"""
find_internal_reaction_ids(m::MetabolicModel; kwargs...)
Shortcut for finding internal reaction identifiers in a model; arguments are
forwarded to [`looks_like_internal_reaction`](@ref).
"""
find_internal_reaction_ids(m::MetabolicModel; kwargs...) =
filter(id -> looks_like_internal_reaction(id, kwargs...), reactions(m))
"""
looks_like_exchange_metabolite(rxn_id::String;
......
@testset "FBAwMC" begin
model = load_model(model_paths["e_coli_core.json"])
idxs = find_internal_reactions(model)
sol = flux_balance_analysis_dict(
model,
Tulip.Optimizer;
modifications = [
change_optimizer_attribute("IPM_IterationsLimit", 1000),
add_crowding_constraint(0.004),
change_constraint("EX_glc__D_e"; lb = -6),
],
)
@test isapprox(
sol["BIOMASS_Ecoli_core_w_GAM"],
0.491026987015203,
atol = TEST_TOLERANCE,
)
@test isapprox(sol["EX_ac_e"], 0.7084745257320869, atol = TEST_TOLERANCE)
end
......@@ -39,7 +39,7 @@ end
Tulip.Optimizer;
modifications = [
change_objective("BIOMASS_Ecoli_core_w_GAM"),
change_constraint("EX_glc__D_e", -12, -12),
change_constraint("EX_glc__D_e"; lb = -12, ub = -12),
change_sense(MAX_SENSE),
change_optimizer_attribute("IPM_IterationsLimit", 110),
],
......@@ -71,7 +71,7 @@ end
@test_throws DomainError flux_balance_analysis_dict(
model,
Tulip.Optimizer;
modifications = [change_constraint("gbbrsh", -12, -12)],
modifications = [change_constraint("gbbrsh"; lb = -12, ub = -12)],
)
@test_throws DomainError flux_balance_analysis_dict(
model,
......
......@@ -82,8 +82,8 @@ end
bounds = objective_bounds(0.99),
modifications = [
change_optimizer_attribute("IPM_IterationsLimit", 500),
change_constraint("EX_glc__D_e", -10, -10),
change_constraint("EX_o2_e", 0.0, 0.0),
change_constraint("EX_glc__D_e"; lb = -10, ub = -10),
change_constraint("EX_o2_e"; lb = 0.0, ub = 0.0),
],
)
......
......@@ -104,7 +104,7 @@ end
Tulip.Optimizer;
modifications = [
change_objective("BIOMASS_Ecoli_core_w_GAM"),
change_constraint("EX_glc__D_e", -12, -12),
change_constraint("EX_glc__D_e"; lb = -12, ub = -12),
change_sense(MAX_SENSE),
change_optimizer_attribute("IPM_IterationsLimit", 110),
knockout(["b0978", "b0734"]), # knockouts out cytbd
......@@ -121,7 +121,7 @@ end
Tulip.Optimizer;
modifications = [
change_objective("BIOMASS_Ecoli_core_w_GAM"),
change_constraint("EX_glc__D_e", -12, -12),
change_constraint("EX_glc__D_e"; lb = -12, ub = -12),
change_sense(MAX_SENSE),
change_optimizer_attribute("IPM_IterationsLimit", 110),
knockout("b2779"), # knockouts out enolase
......
......@@ -4,7 +4,7 @@
model,
Tulip.Optimizer;
modifications = [
change_constraint("EX_glc__D_e", -12, -12),
change_constraint("EX_glc__D_e"; lb = -12, ub = -12),
change_optimizer_attribute("IPM_IterationsLimit", 500),
],
qp_modifications = [change_optimizer(OSQP.Optimizer), silence],
......@@ -13,7 +13,7 @@
model,
Tulip.Optimizer;
modifications = [
change_constraint("EX_glc__D_e", -12, -12),
change_constraint("EX_glc__D_e"; lb = -12, ub = -12),
change_optimizer_attribute("IPM_IterationsLimit", 500),
],
qp_modifications = [change_optimizer(OSQP.Optimizer), silence],
......
......@@ -5,7 +5,7 @@
model,
Tulip.Optimizer,
100;
modifications = [change_constraint("EX_glc__D_e", -2, 2)],
modifications = [change_constraint("EX_glc__D_e"; lb = -2, ub = 2)],
workers = W,
)
......
......@@ -15,6 +15,8 @@
["m1"; "m2"; "m3"],
)
@test filter(looks_like_exchange_reaction, reactions(cp)) == ["EX_m1"]
@test find_internal_reactions(cp) == [2, 3]
@test find_internal_reaction_ids(cp) == ["r2", "r3"]
cp = CoreModel(
[-1.0 0 0; 0 0 -1; 0 -1 0],
......@@ -55,25 +57,30 @@ end
@test length(filter(looks_like_exchange_reaction, reactions(model))) == 20
@test length(filter(looks_like_exchange_metabolite, metabolites(model))) == 20
@test length(filter(looks_like_biomass_reaction, reactions(model))) == 1
@test length(filter(looks_like_internal_reaction, reactions(model))) == 74
model = load_model(model_paths["e_coli_core.xml"])
@test length(filter(looks_like_exchange_reaction, reactions(model))) == 20
@test length(filter(looks_like_exchange_metabolite, metabolites(model))) == 20
@test length(filter(looks_like_biomass_reaction, reactions(model))) == 1
@test length(filter(looks_like_internal_reaction, reactions(model))) == 74
model = load_model(model_paths["e_coli_core.mat"])
@test length(filter(looks_like_exchange_reaction, reactions(model))) == 20
@test length(filter(looks_like_exchange_metabolite, metabolites(model))) == 20
@test length(filter(looks_like_biomass_reaction, reactions(model))) == 1
@test length(filter(looks_like_internal_reaction, reactions(model))) == 74
model = convert(StandardModel, model)
@test length(filter(looks_like_exchange_reaction, reactions(model))) == 20
@test length(filter(looks_like_exchange_metabolite, metabolites(model))) == 20
@test length(filter(looks_like_biomass_reaction, reactions(model))) == 1
@test length(filter(looks_like_internal_reaction, reactions(model))) == 74
model = convert(CoreModelCoupled, model)
@test length(filter(looks_like_exchange_reaction, reactions(model))) == 20
@test length(filter(looks_like_exchange_metabolite, metabolites(model))) == 20
@test length(filter(looks_like_biomass_reaction, reactions(model))) == 1
@test length(filter(looks_like_internal_reaction, reactions(model))) == 74
end
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment