Skip to content
Snippets Groups Projects
Unverified Commit bc215ecf authored by Miroslav Kratochvil's avatar Miroslav Kratochvil :bicyclist: Committed by GitHub
Browse files

Merge pull request #406 from LCSB-BioCore/mk-envelopes

implement objective envelopes (aka production envelopes)
parents 3c1b5508 7dd04d4c
No related branches found
No related tags found
No related merge requests found
"""
envelope_lattice(model::MetabolicModel, rids::Vector{String}; kwargs...)
Version of [`envelope_lattice`](@ref) that works on string reaction IDs instead
of integer indexes.
"""
envelope_lattice(model::MetabolicModel, rids::Vector{String}; kwargs...) =
envelope_lattice(model, Vector{Int}(indexin(rids, reactions(model))); kwargs...)
"""
envelope_lattice(
model::MetabolicModel,
ridxs::Vector{Int};
samples = 10,
ranges = collect(zip(bounds(model)...))[ridxs],
reaction_samples = fill(samples, length(ridxs)),
)
Create a lattice (list of "tick" vectors) for reactions at indexes `ridxs` in a
model. Arguments `samples`, `ranges`, and `reaction_samples` may be optionally
specified to customize the latice creation process.
"""
envelope_lattice(
model::MetabolicModel,
ridxs::Vector{Int};
samples = 10,
ranges = collect(zip(bounds(model)...))[ridxs],
reaction_samples = fill(samples, length(ridxs)),
) = (
lb .+ (ub - lb) .* ((1:s) .- 1) ./ max(s - 1, 1) for
(s, (lb, ub)) in zip(reaction_samples, ranges)
)
"""
objective_envelope(model::MetabolicModel, rids::Vector{String}, args...; kwargs...)
Versioin of [`objective_envelope`](@ref) that works on string reaction IDs
instead of integer indexes.
"""
objective_envelope(model::MetabolicModel, rids::Vector{String}, args...; kwargs...) =
objective_envelope(
model,
Vector{Int}(indexin(rids, reactions(model))),
args...;
kwargs...,
)
"""
objective_envelope(
model::MetabolicModel,
ridxs::Vector{Int},
optimizer;
lattice = envelope_lattice(model, ridxs),
kwargs...,
)
Compute an array of objective values for the `model` for rates of reactions
specified `ridxs` fixed to a regular range of values between their respective
lower and upper bounds.
This can be used to compute a "production envelope" of a metabolite; but
generalizes to any specifiable objective and to multiple dimensions of the
examined space. To retrieve a production envelope of any metabolite, set the
objective coefficient vector of the `model` to a vector that contains a single
`1` for the exchange reaction that "outputs" this metabolite, and run
[`objective_envelope`](@ref) with the exchange reaction of the "parameter"
metabolite specified in `ridxs`.
Returns a named tuple that contains `lattice` with reference values of the
metabolites, and an N-dimensional array `values` with the computed objective
values, where N is the number of specified reactions. Because of the
increasing dimensionality, the computation gets very voluminous with increasing
length of `ridxs`.
`kwargs` are internally forwarded to [`screen_optmodel_modifications`](@ref).
"""
objective_envelope(
model::MetabolicModel,
ridxs::Vector{Int},
optimizer;
lattice = envelope_lattice(model, ridxs),
kwargs...,
) = (
lattice = collect.(lattice),
values = screen_optmodel_modifications(
model,
optimizer,
modifications = collect(
[(_, optmodel) -> begin
for (i, ridx) in enumerate(ridxs)
set_normalized_rhs(optmodel[:lbs][ridx], bounds[i])
set_normalized_rhs(optmodel[:ubs][ridx], bounds[i])
end
end] for bounds in Iterators.product(lattice...)
),
analysis = screen_optimize_objective;
kwargs...,
),
)
......@@ -143,3 +143,82 @@ A shortcut for [`screen`](@ref) that only works with model variants.
"""
screen_variants(model, variants, analysis; workers = [myid()]) =
screen(model; variants = variants, analysis = analysis, workers = workers)
"""
screen_optimize_objective(_, optmodel)::Union{Float64,Nothing}
A variant of [`optimize_objective`](@ref) directly usable in
[`screen_optmodel_modifications`](@ref).
"""
screen_optimize_objective(_, optmodel)::Union{Float64,Nothing} =
optimize_objective(optmodel)
"""
screen_optmodel_modifications(
model::MetabolicModel,
optimizer;
modifications::Array{V,N},
analysis = screen_optimize_objective,
workers = [myid()],
) where {V<:AbstractVector,N}
Screen multiple modifications of the same optimization model.
This function is potentially more efficient than [`screen`](@ref) because it
avoids making variants of the model structure and remaking of the optimization
model. On the other hand, modification functions need to keep the optimization
model in a recoverable state (one that leaves the model usable for the next
modification), which limits the possible spectrum of modifications applied.
Internally, `model` is distributed to `workers` and transformed into the
optimization model using [`make_optimization_model`](@ref). With that,
vectors of functions in `modifications` are consecutively applied, and the
result of `analysis` function called on model are collected to an array of the
same extent as `modifications`.
Both the modification functions (in vectors) and the analysis function here
have 2 parameters (as opposed to 1 with [`screen`](@ref)): first is the `model`
(carried through as-is), second is the prepared JuMP optimization model that
may be modified and acted upon. As an example, you can use modification
[`change_constraint`](@ref) and analysis [`screen_optimize_objective`](@ref).
"""
function screen_optmodel_modifications(
model::MetabolicModel,
optimizer;
modifications::Array{V,N},
analysis = screen_optimize_objective,
workers = [myid()],
) where {V<:AbstractVector,N}
save_model = :(
begin
local model = $model
$COBREXA.precache!(model)
(model, $COBREXA.make_optimization_model(model, $optimizer))
end
)
map(
fetch,
save_at.(workers, :cobrexa_screen_optmodel_modifications_data, Ref(save_model)),
)
save_model = nothing
map(fetch, save_at.(workers, :cobrexa_screen_optmodel_modifications_fn, Ref(analysis)))
res = dpmap(
mods -> :(
begin
local (model, optmodel) = cobrexa_screen_optmodel_modifications_data
for mod in $mods
mod(model, optmodel)
end
cobrexa_screen_optmodel_modifications_fn(model, optmodel)
end
),
CachingPool(workers),
modifications,
)
map(fetch, remove_from.(workers, :cobrexa_screen_optmodel_modifications_data))
map(fetch, remove_from.(workers, :cobrexa_screen_optmodel_modifications_fn))
return res
end
......@@ -59,6 +59,15 @@ function is_solved(optmodel)
false
end
function optimize_objective(optmodel)::Union{Float64,Nothing}
optimize!(optmodel)
if is_solved(optmodel)
objective_value(optmodel)
else
nothing
end
end
"""
get_optmodel_bounds(opt_model)
......
@testset "Envelopes" begin
m = load_model(model_paths["e_coli_core.xml"])
rxns = [1, 2, 3]
lat = collect.(envelope_lattice(m, rxns; samples = 3))
@test lat == [[0, 500, 1000], [-1000, 0, 1000], [-1000, 0, 1000]]
@test lat == collect.(envelope_lattice(m, reactions(m)[rxns]; samples = 3))
vals =
objective_envelope(
m,
reactions(m)[rxns],
Tulip.Optimizer;
lattice = lat,
workers = W,
).values
@test size(vals) == (3, 3, 3)
@test count(isnothing, vals) == 15
@test isapprox(
filter(!isnothing, vals),
[
0.0,
0.0,
0.0,
0.704036947,
10.053282384,
10.053282365,
0.0,
0.0,
0.0,
0.873921506,
18.664485767,
20.412058183,
],
atol = TEST_TOLERANCE,
)
end
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment