Skip to content
Snippets Groups Projects
Commit b7f00cf7 authored by Miroslav Kratochvil's avatar Miroslav Kratochvil :bicyclist:
Browse files

clean up analysis documentation and examples

Closes #318
parent c60bda6d
No related branches found
No related tags found
No related merge requests found
......@@ -50,17 +50,21 @@ The `optimizer` must be set to a `JuMP`-compatible optimizer, such as
`GLPK.Optimizer` or `Tulip.Optimizer`
Optionally, you may specify one or more modifications to be applied to the
model before the analysis, such as
[`change_optimizer_attribute`](@ref),[`change_objective`](@ref), and
[`change_sense`](@ref).
model before the analysis, such as [`change_optimizer_attribute`](@ref),
[`change_objective`](@ref), and [`change_sense`](@ref).
Returns an optimized `JuMP` model.
# Example
```
model = load_model(StandardModel, "e_coli_core.json")
biomass = findfirst(model.reactions, "BIOMASS_Ecoli_core_w_GAM")
solution = flux_balance_analysis(model, GLPK.optimizer; modifications=[change_objective(biomass)])
model = load_model("e_coli_core.json")
solution = flux_balance_analysis(model, GLPK.optimizer)
value.(solution[:x]) # extract flux steady state from the optimizer
biomass_reaction_id = findfirst(model.reactions, "BIOMASS_Ecoli_core_w_GAM")
modified_solution = flux_balance_analysis(model, GLPK.optimizer;
modifications=[change_objective(biomass_reaction_id)])
```
"""
......
......@@ -19,9 +19,8 @@ s.t. S x = b
cᵀx ≤ bounds(Z₀)[2]
```
where Z₀:= cᵀx₀ is the objective value of an optimal solution of the associated
FBA problem (see [`flux_balance_analysis`](@ref)). See "Gudmundsson, S., Thiele,
I. Computationally efficient flux variability analysis. BMC Bioinformatics 11,
489 (2010). https://doi.org/10.1186/1471-2105-11-489" for more information.
FBA problem (see [`flux_balance_analysis`](@ref) for a related analysis, also
for explanation of the `modifications` argument).
The `bounds` is a user-supplied function that specifies the objective bounds
for the variability optimizations, by default it restricts the flux objective
......@@ -43,6 +42,12 @@ Returns a matrix of extracted `ret` values for minima and maxima, of total size
(`length(reactions)`,2). The optimizer result status is checked with
[`is_solved`](@ref); `nothing` is returned if the optimization failed for any
reason.
# Example
```
model = load_model("e_coli_core.json")
flux_variability_analysis(model, [1, 2, 3, 42], GLPK.optimizer)
```
"""
function flux_variability_analysis(
model::MetabolicModel,
......@@ -98,7 +103,8 @@ end
kwargs...
)
A simpler version of [`flux_variability_analysis`](@ref) that maximizes and minimizes all reactions in the model. Arguments are forwarded.
A simpler version of [`flux_variability_analysis`](@ref) that maximizes and
minimizes all reactions in the model. Arguments are forwarded.
"""
function flux_variability_analysis(model::MetabolicModel, optimizer; kwargs...)
n = n_reactions(model)
......
......@@ -35,7 +35,8 @@ pFBA gets the model optimum by standard FBA (using
finds a minimal total flux through the model that still satisfies the (slightly
relaxed) optimum. This is done using a quadratic problem optimizer. If the
original optimizer does not support quadratic optimization, it can be changed
using the callback in `qp_modifications`, which are applied after the FBA.
using the callback in `qp_modifications`, which are applied after the FBA. See
the documentation of flux_balance_analysis for usage examples of modifications.
Thhe optimum relaxation sequence can be specified in `relax` parameter, it
defaults to multiplicative range of `[1.0, 0.999999, ..., 0.99]` of the
......@@ -46,11 +47,9 @@ optimization failed.
# Example
```
optimizer = Gurobi.Optimizer
atts = Dict("OutputFlag" => 0)
model = load_model(StandardModel, "iJO1366.json")
biomass = findfirst(model.reactions, "BIOMASS_Ec_iJO1366_WT_53p95M")
sol = pfba(model, biomass, Gurobi.optimizer)
model = load_model("e_coli_core.json")
optmodel = parsimonious_flux_balance_analysis(model, biomass, Gurobi.Optimizer)
value.(solution[:x]) # extract the flux from the optimizer
```
"""
function parsimonious_flux_balance_analysis(
......@@ -97,9 +96,10 @@ end
"""
parsimonious_flux_balance_analysis_vec(args...; kwargs...)
Perform parsimonious flux balance analysis on `model` using `optimizer`.
Returns a vector of fluxes in the same order as the reactions in `model`.
Arguments are forwarded to [`parsimonious_flux_balance_analysis`](@ref) internally.
Perform parsimonious flux balance analysis on `model` using `optimizer`.
Returns a vector of fluxes in the same order as the reactions in `model`.
Arguments are forwarded to [`parsimonious_flux_balance_analysis`](@ref)
internally.
"""
function parsimonious_flux_balance_analysis_vec(args...; kwargs...)
opt_model = parsimonious_flux_balance_analysis(args...; kwargs...)
......@@ -112,9 +112,9 @@ end
"""
parsimonious_flux_balance_analysis_dict(model::MetabolicModel, args...; kwargs...)
Perform parsimonious flux balance analysis on `model` using `optimizer`.
Returns a dictionary mapping the reaction IDs to fluxes.
Arguments are forwarded to [`parsimonious_flux_balance_analysis`](@ref) internally.
Perform parsimonious flux balance analysis on `model` using `optimizer`.
Returns a dictionary mapping the reaction IDs to fluxes. Arguments are
forwarded to [`parsimonious_flux_balance_analysis`](@ref) internally.
"""
function parsimonious_flux_balance_analysis_dict(model::MetabolicModel, args...; kwargs...)
opt_fluxes = parsimonious_flux_balance_analysis_vec(model, args...; kwargs...)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment