Skip to content
Snippets Groups Projects
Unverified Commit 0012e659 authored by Miroslav Kratochvil's avatar Miroslav Kratochvil :bicyclist:
Browse files

FVA warmup

parent 1685f21b
No related branches found
No related tags found
No related merge requests found
......@@ -7,28 +7,53 @@
workers = [myid()],
)
Generates warmup points for samplers by minimizing and maximizing random
reactions. Very similar to
[`flux_variability_analysis`](@ref).
Generates FVA-like warmup points for samplers, by selecting random points by
minimizing and maximizing reactions. Can not return more than 2 times the
number of reactions in the model.
"""
function warmup_from_variability(
n_points::Int,
model::MetabolicModel,
optimizer;
kwargs...
)
function warmup_from_variability(n_points::Int, model::MetabolicModel, optimizer; kwargs...)
nr = n_reactions(model)
n_points > 2 * nr && throw(
DomainError(
n_points,
"Variability method can not generate more than $(2*nr) points from this model",
),
)
sample = shuffle(vcat(1:nr, -(1:nr)))[begin:n_points]
warmup_from_variability(
-filter(x -> x < 0, sample),
filter(x -> x > 0, sample),
model,
optimizer;
kwargs...,
)
end
"""
warmup_from_variability(
min_reactions::Vector{Int},
max_reactions::Vector{Int},
model::MetabolicModel,
optimizer;
modifications=[],
workers::Vector{Int}=[myid()]
)::Matrix{Float64}
Generate FVA-like warmup points for samplers, by minimizing and maximizing the
specified reactions. The result is returned as a matrix, each point occupies as
single column in the result.
"""
function warmup_from_variability(
min_reactions::Vector{Int},
max_reactions::Vector{Int},
model::MetabolicModel,
optimizer;
modifications=[],
workers::Vector{Int}=[myid()]
)::Tuple{Matrix{Float64}, AbstractVector{Float64}, AbstractVector{Float64}}
modifications = [],
workers::Vector{Int} = [myid()],
)::Matrix{Float64}
# create optimization problem at workers, apply modifications
save_model = :(
begin
......@@ -43,18 +68,20 @@ function warmup_from_variability(
map(fetch, save_at.(workers, :cobrexa_sampling_warmup_optmodel, Ref(save_model)))
fluxes = dpmap(
rid -> :($COBREXA._FVA_optimize_reaction(
cobrexa_sampling_warmup_optmodel,
$rid,
optmodel -> value.(optmodel[:x]),
)),
CachingPool(workers),
vcat(-min_reactions, max_reactions),
fluxes = hcat(
dpmap(
rid -> :($COBREXA._FVA_optimize_reaction(
cobrexa_sampling_warmup_optmodel,
$rid,
optmodel -> $COBREXA.JuMP.value.(optmodel[:x]),
)),
CachingPool(workers),
vcat(-min_reactions, max_reactions),
)...,
)
# free the data on workers
map(fetch, remove_from.(workers, :cobrexa_sampling_warmup_optmodel))
return hcat(fluxes...)
return fluxes
end
......@@ -6,33 +6,16 @@
)
model = load_model(StandardModel, model_path)
# Serial test
ws, lbs, ubs = warmup(
pts = warmup_from_variability(
100,
model,
Tulip.Optimizer;
modifications = [change_constraint("EX_glc__D_e", -4, 4)],
warmup_points = collect(1:n_reactions(model)),
workerids = W,
modifications = [change_constraint("EX_glc__D_e", -2, 2)],
workers = W,
)
ind = first(indexin(["EX_glc__D_e"], reactions(model)))
@test size(ws) == (95, 2)
@test size(ws[1, 1]) == (95,)
@test lbs[ind] -4
@test ubs[ind] 4
# Parallel test
wsparallel, lbsparallel, ubsparallel = warmup(
model,
Tulip.Optimizer;
modifications = [change_constraint("EX_glc__D_e", -4, 4)],
warmup_points = collect(1:n_reactions(model)),
workerids = W,
)
ind = first(indexin(["EX_glc__D_e"], reactions(model)))
@test size(wsparallel) == (95, 2)
@test size(wsparallel[1, 1]) == (95,)
@test lbsparallel[ind] -4
@test ubsparallel[ind] 4
idx = first(indexin(["EX_glc__D_e"], reactions(model)))
@test size(pts) == (95, 100)
@test all(pts[idx, :] .>= -2)
@test all(pts[idx, :] .<= 2)
end
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment