Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
F
Footprint based analysis and causal network contextualisation in SARS-CoV-2 infected A549 cell line
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Wiki
Requirements
External wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Computational modelling and simulation
Footprint based analysis and causal network contextualisation in SARS-CoV-2 infected A549 cell line
Commits
e32c8424
Commit
e32c8424
authored
3 years ago
by
Alberto Valdeolivas
Browse files
Options
Downloads
Patches
Plain Diff
Upload New File
parent
bffedeb7
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
02_Carnival_Transcriptomics_phosphoprotemicsMann.Rmd
+363
-0
363 additions, 0 deletions
02_Carnival_Transcriptomics_phosphoprotemicsMann.Rmd
with
363 additions
and
0 deletions
02_Carnival_Transcriptomics_phosphoprotemicsMann.Rmd
0 → 100644
+
363
−
0
View file @
e32c8424
---
title: "CARNIVAL for causal integration of Phospho and transcriptomics data after SARS-CoV-2 infection"
author: "Alberto Valdeolivas: alberto.valdeolivas@bioquant.uni-heidelberg.de; Date:"
date: "09/07/2020"
output: github_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
### License Info
This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.
Please check http://www.gnu.org/licenses/.
## Introduction
The present script computes TF activity from transcriptomics data on the A549
human lung derived cell line after SARS-CoV-2 infection. It also takes kinase
activity derived from phosphoproteomics data in the same cell line. Both
experiments were conducted 24 hours after SARS-CoV-2 infection, but they come
from two different independent publications (see references)
## Getting the inputs for CARNIPHAL
We first load the required libraries and define a function to export CARNIVAL
results to cytoscape.
```{r, message=FALSE, warning=FALSE}
library(readr)
library(DESeq2)
library(CARNIVAL)
library(OmnipathR)
library(progeny)
library(dorothea)
library(dplyr)
library(readr)
library(tidyr)
library(tibble)
library(ggplot2)
## We also define a function to format the CARNIVAL output to cytoscape
OutputCyto <- function(CarnivalResults, outputFile) {
CarnivalNetwork <-
as.data.frame(CarnivalResults$weightedSIF, stringsAsFactors = FALSE) %>%
dplyr::mutate(Sign = as.numeric(Sign), Weight = as.numeric(Weight)) %>%
dplyr::mutate(Weight = Sign * Weight) %>%
dplyr::select(Node1, Weight, Node2)
CarnivalNetworkNodes <-
unique(c(CarnivalNetwork$Node1,CarnivalNetwork$Node2))
CarnivalAttributes <- CarnivalResults$nodesAttributes %>%
as.data.frame() %>%
dplyr::filter(Node %in% CarnivalNetworkNodes) %>%
dplyr::mutate(NodeType = as.character(NodeType)) %>%
dplyr::mutate(NodeType=if_else(NodeType =="", "I", NodeType))
nameOutputNetwork <- paste0(outputFile, "Network.sif")
nameOutputAttributes <- paste0(outputFile, "Attributes.txt")
write.table(CarnivalNetwork, file = nameOutputNetwork,
quote = FALSE, row.names = FALSE, col.names = FALSE, sep = " ")
write.table(CarnivalAttributes, file = nameOutputAttributes,
quote = FALSE, row.names = FALSE, col.names = TRUE, sep = "\t")
}
```
### Differential expression analysis on the transcriptomics data
We take the series 5 from the following dataset (A549 mock treated versus
SARS-CoV-2 infected):
<https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE147507>
which is related to the following publication:
<https://www.cell.com/cell/pdf/S0092-8674(20)30489-X.pdf?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS009286742030489X%3Fshowall%3Dtrue>
```{r, message=FALSE}
## Raw counts table
GSE147507_raw_counts <-
read.csv("TranscriptomicsData/GSE147507_RawReadCounts_Human.tsv", sep = "\t")
count_A549vsCOV2_df <- GSE147507_raw_counts[,c(22:27)]
row.names(count_A549vsCOV2_df) <- GSE147507_raw_counts$X
## Define conditions
targets_A549vsCOV2 <-
as.data.frame(matrix(NA,length(names(count_A549vsCOV2_df)),1))
names(targets_A549vsCOV2) <- c("condition")
row.names(targets_A549vsCOV2) <- names(count_A549vsCOV2_df)
targets_A549vsCOV2$condition <-
gsub("Series5_", "", row.names(targets_A549vsCOV2))
targets_A549vsCOV2$condition <-
factor(gsub("_[1-3]$", "", targets_A549vsCOV2$condition))
targets_A549vsCOV2
## Create deseq2 object
dds_A549vsCOV2 <-
DESeqDataSetFromMatrix(countData = as.matrix(count_A549vsCOV2_df),
colData = targets_A549vsCOV2, design = ~ condition)
## Set control
dds_A549vsCOV2$condition <- relevel(dds_A549vsCOV2$condition,
ref = levels(targets_A549vsCOV2$condition)[1])
## Carry out diff exp
dds_A549vsCOV2 <- DESeq(dds_A549vsCOV2)
## See the comparisons carried out
comparison_A549vsCOV2 <- resultsNames(dds_A549vsCOV2)
## Get results table
results_A549vsCOV2 <-
results(dds_A549vsCOV2, name=comparison_A549vsCOV2[2])
```
### Pathway activity estimation using Progeny
We first estimate the pathway activity using the Progeny package. In particular,
we compute the normalised enriched score (NEs) of the different pathways by
running Progeny using the statistic from the differential express analysis.
```{r}
dds_A549vsCOV2_df <- as.data.frame(results_A549vsCOV2) %>%
rownames_to_column(var = "GeneID") %>%
dplyr::select(GeneID, stat) %>%
dplyr::filter(!is.na(stat)) %>%
column_to_rownames(var = "GeneID")
pathways_A549vsCOV2_zscore <- t(progeny(as.matrix(dds_A549vsCOV2_df),
scale=TRUE, organism="Human", top = 100, perm = 10000, z_scores = TRUE))
colnames(pathways_A549vsCOV2_zscore) <- "NES"
## I also need to run progeny in such a way to have values between 1 and -1 to
## use as CARNIVAL input
pathways_A549vsCOV2_zscore_inputCarnival <-
t(progeny(as.matrix(dds_A549vsCOV2_df),
scale=TRUE, organism="Human", top = 100, perm = 10000, z_scores = FALSE))
colnames(pathways_A549vsCOV2_zscore_inputCarnival) <- "Activity"
```
We now display the normalized enrichment scores (NES) in a bar plot.
```{r, dpi=300}
pathways_A549vsCOV2_zscore_df <- as.data.frame(pathways_A549vsCOV2_zscore) %>%
rownames_to_column(var = "Pathway") %>%
dplyr::arrange(NES) %>%
dplyr::mutate(Pathway = factor(Pathway))
ggplot(pathways_A549vsCOV2_zscore_df,aes(x = reorder(Pathway, NES), y = NES)) +
geom_bar(aes(fill = NES), stat = "identity") +
scale_fill_gradient2(low = "darkblue", high = "indianred",
mid = "whitesmoke", midpoint = 0) +
theme_minimal() +
theme(axis.title = element_text(face = "bold", size = 12),
axis.text.x =
element_text(angle = 45, hjust = 1, size =10, face= "bold"),
axis.text.y = element_text(size =10, face= "bold"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank()) +
xlab("Pathways")
```
### Transcription Factor activity with Dorothea and Viper
Now, we estimate the transcription factor (TF) activity using the dorothea
package. We select Dorothea interactions with confidence level A, B and C.
```{r}
## We load Dorothea Regulons
data(dorothea_hs, package = "dorothea")
regulons <- dorothea_hs %>%
dplyr::filter(confidence %in% c("A", "B","C"))
```
We run Viper using the statistic from the different expression analysis.
```{r, message=FALSE}
dds_A549vsCOV2_stat <- as.data.frame(results_A549vsCOV2) %>%
rownames_to_column(var = "GeneID") %>%
dplyr::select(GeneID, stat) %>%
dplyr::filter(!is.na(stat)) %>%
column_to_rownames(var = "GeneID") %>%
as.matrix()
tf_activities_A549vsCOV2_stat <-
dorothea::run_viper(as.matrix(dds_A549vsCOV2_stat), regulons,
options = list(minsize = 5, eset.filter = FALSE,
cores = 1, verbose = FALSE, nes = TRUE))
```
We now display the top 25 normalized enrichment scores (NES) for the TF in a
bar plot.
```{r, dpi=300}
tf_activities_A549vsCOV2_top25 <- tf_activities_A549vsCOV2_stat %>%
as.data.frame() %>%
rownames_to_column(var = "GeneID") %>%
dplyr::rename(NES = "stat") %>%
dplyr::top_n(25, wt = abs(NES)) %>%
dplyr::arrange(NES) %>%
dplyr::mutate(GeneID = factor(GeneID))
ggplot(tf_activities_A549vsCOV2_top25,aes(x = reorder(GeneID, NES), y = NES)) +
geom_bar(aes(fill = NES), stat = "identity") +
scale_fill_gradient2(low = "darkblue", high = "indianred",
mid = "whitesmoke", midpoint = 0) +
theme_minimal() +
theme(axis.title = element_text(face = "bold", size = 12),
axis.text.x =
element_text(angle = 45, hjust = 1, size =10, face= "bold"),
axis.text.y = element_text(size =10, face= "bold"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank()) +
xlab("Transcription Factors")
```
### Reading Kinase Activity
We here read the kinase activity computed by Danish Memon <memon@ebi.ac.uk> from
the phosphoproteomics data extracted from the following publication:
<https://www.biorxiv.org/content/10.1101/2020.06.17.156455v1>
```{r, message=FALSE}
## We take the kinase activity after 24 hours to be in line with the transcriptomics
## data
DIA_kinase_activity <- read_csv("Mann/diaCovidKinaseActMat.csv") %>%
dplyr::rename(kinase = "X1") %>%
dplyr::select(kinase, `24h`)
```
### Generating the Prior Knowledge Network from Omnipath
We use the OmnipathR package to fetch the Omnipath database and generate the
prior knowledge network. We take the signed and directed protein-protein
interactions.
```{r}
ia_omnipath <- import_omnipath_interactions() %>% as_tibble()
ia_pwextra <- import_pathwayextra_interactions() %>% as_tibble()
ia_kinaseextra <- import_kinaseextra_interactions() %>% as_tibble()
## We bind the datasets
interactions <- as_tibble(
bind_rows(
ia_omnipath %>% mutate(type = 'ppi'),
ia_pwextra %>% mutate(type = 'ppi'),
ia_kinaseextra %>% mutate(type = 'ppi')))
signed_directed_interactions <-
dplyr::filter(interactions, consensus_direction==1) %>%
filter(consensus_stimulation == 1 | consensus_inhibition == 1) %>%
dplyr::mutate(sign = if_else(consensus_stimulation==1,1,-1)) %>%
dplyr::select(source_genesymbol, sign, target_genesymbol) %>%
dplyr::rename(source ="source_genesymbol", target ="target_genesymbol")
carnival_pkn <- signed_directed_interactions %>%
dplyr::distinct(source, target, .keep_all = TRUE)
all_source_nodes <- unique(carnival_pkn$source)
all_target_nodes <- unique(carnival_pkn$target)
all_nodes_network <- unique(c(all_source_nodes,all_target_nodes))
```
## Results
We are going to run CARNIVAL twice using the TF activity as the CARNIVAL
measurements and the kinase activities as perturbations. In the second run,
we will additionally use pathway scores from progeny as weights for the network.
For these runs, we are going to select the top 30 TFs and the top 10 kinases.
```{r}
top_10_kinases <- DIA_kinase_activity %>%
dplyr::filter(kinase %in% all_source_nodes) %>%
dplyr::top_n(10,abs(`24h`)) %>%
tibble::column_to_rownames(var = "kinase") %>%
t() %>% sign() %>% as.data.frame()
top_30_tf <- tf_activities_A549vsCOV2_stat %>%
as.data.frame() %>%
rownames_to_column(var = "GeneID") %>%
dplyr::filter(GeneID %in% all_nodes_network) %>%
dplyr::arrange(desc(abs(stat))) %>%
dplyr::top_n(30, wt = abs(stat)) %>%
column_to_rownames(var = "GeneID") %>%
t() %>% as.data.frame()
progeny_weigths <- pathways_A549vsCOV2_zscore_inputCarnival %>%
as.data.frame() %>% t()
```
### CARNIVAL without progeny weights
```{r, message=FALSE, warning=FALSE, eval=FALSE}
carnival_results_noprogeny <-runCARNIVAL(
solverPath="/opt/ibm/ILOG/CPLEX_Studio129/cplex/bin/x86-64_linux/cplex",
netObj=carnival_pkn,
measObj=top_30_tf,
inputObj = top_10_kinases,
# dir_name="Carnival_Results",
# weightObj=as.data.frame(t(Kin_activity_LNCaP_noInhib_t1_EGF)),
# nodeID = 'gene',
timelimit = 900,
solver = "cplex")
saveRDS(carnival_results_noprogeny,
file = "Carnival_Results/carnival_results_noprogeny.rds")
OutputCyto(carnival_results_noprogeny,
outputFile="Carnival_Results/carnival_results_noprogeny")
```
Network with the results: Rectangles are the most active transcription factors
after infection and the inverse triangles are the most active kinases. Ellipses
are signaling intermediates proteins linking those kinsases and TFs.
Red means positive activity or overphosphorylation after infection and blue the
opposite.
<br><br>

<br><br>
### CARNIVAL with progeny weights
```{r, message=FALSE, warning=FALSE, eval=FALSE}
carnival_results_withprogeny <-runCARNIVAL(
solverPath="/opt/ibm/ILOG/CPLEX_Studio129/cplex/bin/x86-64_linux/cplex",
netObj=carnival_pkn,
measObj=top_30_tf,
inputObj = top_10_kinases,
# dir_name="Carnival_Results",
weightObj=progeny_weigths,
# nodeID = 'gene',
timelimit = 900,
solver = "cplex")
saveRDS(carnival_results_withprogeny,
file = "Carnival_Results/carnival_results_withprogeny.rds")
OutputCyto(carnival_results_withprogeny,
outputFile="Carnival_Results/carnival_results_withprogeny")
```
<br><br>

<br><br>
## Session Info Details
```{r, echo=FALSE, eval=TRUE}
sessionInfo()
```
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment