Skip to content
Snippets Groups Projects
02_Carnival_Transcriptomics_phosphoprotemicsMann.md 16.9 KiB
Newer Older
Alberto Valdeolivas's avatar
Alberto Valdeolivas committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
CARNIVAL for causal integration of Phospho and transcriptomics data
after SARS-CoV-2 infection
================
Alberto Valdeolivas: <alberto.valdeolivas@bioquant.uni-heidelberg.de>;
Date:
09/07/2020

### License Info

This program is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

Please check <http://www.gnu.org/licenses/>.

## Introduction

The present script computes TF activity from transcriptomics data on the
A549 human lung derived cell line after SARS-CoV-2 infection. It also
takes kinase activity derived from phosphoproteomics data in the same
cell line. Both experiments were conducted 24 hours after SARS-CoV-2
infection, but they come from two different independent publications
(see references)

## Getting the inputs for CARNIPHAL

We first load the required libraries and define a function to export
CARNIVAL results to cytoscape.

``` r
library(readr)
library(DESeq2)
library(CARNIVAL)
library(OmnipathR)
library(progeny)
library(dorothea)
library(dplyr)
library(readr)
library(tidyr)
library(tibble)
library(ggplot2)

## We also define a function to format the CARNIVAL output to cytoscape
OutputCyto <- function(CarnivalResults, outputFile) {
    CarnivalNetwork <- 
        as.data.frame(CarnivalResults$weightedSIF, stringsAsFactors = FALSE) %>%
        dplyr::mutate(Sign = as.numeric(Sign), Weight = as.numeric(Weight)) %>% 
        dplyr::mutate(Weight = Sign * Weight) %>%
        dplyr::select(Node1, Weight, Node2)
        
    CarnivalNetworkNodes <- 
        unique(c(CarnivalNetwork$Node1,CarnivalNetwork$Node2))
    
    CarnivalAttributes <- CarnivalResults$nodesAttributes %>% 
        as.data.frame() %>%
        dplyr::filter(Node %in% CarnivalNetworkNodes) %>%
        dplyr::mutate(NodeType = as.character(NodeType)) %>%
        dplyr::mutate(NodeType=if_else(NodeType =="", "I", NodeType))
            
    nameOutputNetwork <- paste0(outputFile, "Network.sif")
    nameOutputAttributes <-  paste0(outputFile, "Attributes.txt")    
    
    write.table(CarnivalNetwork, file = nameOutputNetwork,
        quote = FALSE, row.names = FALSE, col.names = FALSE, sep = " ")
    
    write.table(CarnivalAttributes, file = nameOutputAttributes,
        quote = FALSE, row.names = FALSE, col.names = TRUE, sep = "\t")
}
```

### Differential expression analysis on the transcriptomics data

We take the series 5 from the following dataset (A549 mock treated
versus SARS-CoV-2 infected):

<https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE147507>

which is related to the following publication:

<https://www.cell.com/cell/pdf/S0092-8674(20)30489-X.pdf?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS009286742030489X%3Fshowall%3Dtrue>

``` r
## Raw counts table
GSE147507_raw_counts <- 
    read.csv("TranscriptomicsData/GSE147507_RawReadCounts_Human.tsv", sep = "\t")

count_A549vsCOV2_df <- GSE147507_raw_counts[,c(22:27)]
row.names(count_A549vsCOV2_df) <- GSE147507_raw_counts$X

## Define conditions
targets_A549vsCOV2 <- 
    as.data.frame(matrix(NA,length(names(count_A549vsCOV2_df)),1))
names(targets_A549vsCOV2) <- c("condition")
row.names(targets_A549vsCOV2) <- names(count_A549vsCOV2_df)
targets_A549vsCOV2$condition <- 
    gsub("Series5_", "", row.names(targets_A549vsCOV2))
targets_A549vsCOV2$condition <- 
    factor(gsub("_[1-3]$", "", targets_A549vsCOV2$condition))
targets_A549vsCOV2
```

    ##                                 condition
    ## Series5_A549_Mock_1             A549_Mock
    ## Series5_A549_Mock_2             A549_Mock
    ## Series5_A549_Mock_3             A549_Mock
    ## Series5_A549_SARS.CoV.2_1 A549_SARS.CoV.2
    ## Series5_A549_SARS.CoV.2_2 A549_SARS.CoV.2
    ## Series5_A549_SARS.CoV.2_3 A549_SARS.CoV.2

``` r
## Create deseq2 object
dds_A549vsCOV2 <- 
    DESeqDataSetFromMatrix(countData = as.matrix(count_A549vsCOV2_df), 
    colData = targets_A549vsCOV2, design = ~ condition)

## Set control
dds_A549vsCOV2$condition <- relevel(dds_A549vsCOV2$condition, 
    ref = levels(targets_A549vsCOV2$condition)[1])

## Carry out diff exp
dds_A549vsCOV2 <- DESeq(dds_A549vsCOV2)

## See the comparisons carried out
comparison_A549vsCOV2 <- resultsNames(dds_A549vsCOV2)

## Get results table
results_A549vsCOV2 <- 
    results(dds_A549vsCOV2, name=comparison_A549vsCOV2[2])
```

### Pathway activity estimation using Progeny

We first estimate the pathway activity using the Progeny package. In
particular, we compute the normalised enriched score (NEs) of the
different pathways by running Progeny using the statistic from the
differential express analysis.

``` r
dds_A549vsCOV2_df <- as.data.frame(results_A549vsCOV2) %>% 
    rownames_to_column(var = "GeneID") %>% 
    dplyr::select(GeneID, stat) %>% 
    dplyr::filter(!is.na(stat)) %>% 
    column_to_rownames(var = "GeneID") 

pathways_A549vsCOV2_zscore <- t(progeny(as.matrix(dds_A549vsCOV2_df), 
    scale=TRUE, organism="Human", top = 100, perm = 10000, z_scores = TRUE))
colnames(pathways_A549vsCOV2_zscore) <- "NES"

## I also need to run progeny in such a way to have values between 1 and -1 to
## use as CARNIVAL input
pathways_A549vsCOV2_zscore_inputCarnival <- 
  t(progeny(as.matrix(dds_A549vsCOV2_df), 
    scale=TRUE, organism="Human", top = 100, perm = 10000, z_scores = FALSE))
colnames(pathways_A549vsCOV2_zscore_inputCarnival) <- "Activity"
```

We now display the normalized enrichment scores (NES) in a bar plot.

``` r
pathways_A549vsCOV2_zscore_df <- as.data.frame(pathways_A549vsCOV2_zscore) %>% 
    rownames_to_column(var = "Pathway") %>%
    dplyr::arrange(NES) %>%
    dplyr::mutate(Pathway = factor(Pathway))

ggplot(pathways_A549vsCOV2_zscore_df,aes(x = reorder(Pathway, NES), y = NES)) + 
    geom_bar(aes(fill = NES), stat = "identity") +
    scale_fill_gradient2(low = "darkblue", high = "indianred", 
        mid = "whitesmoke", midpoint = 0) + 
    theme_minimal() +
    theme(axis.title = element_text(face = "bold", size = 12),
        axis.text.x = 
            element_text(angle = 45, hjust = 1, size =10, face= "bold"),
        axis.text.y = element_text(size =10, face= "bold"),
        panel.grid.major = element_blank(), 
        panel.grid.minor = element_blank()) +
    xlab("Pathways")
```

![](02_Carnival_Transcriptomics_phosphoprotemicsMann_files/figure-gfm/unnamed-chunk-4-1.png)<!-- -->

### Transcription Factor activity with Dorothea and Viper

Now, we estimate the transcription factor (TF) activity using the
dorothea package. We select Dorothea interactions with confidence level
A, B and C.

``` r
## We load Dorothea Regulons
data(dorothea_hs, package = "dorothea")
regulons <- dorothea_hs %>%
  dplyr::filter(confidence %in% c("A", "B","C"))
```

We run Viper using the statistic from the different expression analysis.

``` r
dds_A549vsCOV2_stat <-  as.data.frame(results_A549vsCOV2) %>% 
    rownames_to_column(var = "GeneID") %>% 
    dplyr::select(GeneID, stat) %>% 
    dplyr::filter(!is.na(stat)) %>% 
    column_to_rownames(var = "GeneID") %>%
    as.matrix()

tf_activities_A549vsCOV2_stat <- 
    dorothea::run_viper(as.matrix(dds_A549vsCOV2_stat), regulons,
    options =  list(minsize = 5, eset.filter = FALSE, 
    cores = 1, verbose = FALSE, nes = TRUE))
```

We now display the top 25 normalized enrichment scores (NES) for the TF
in a bar plot.

``` r
tf_activities_A549vsCOV2_top25 <- tf_activities_A549vsCOV2_stat %>%
    as.data.frame() %>% 
    rownames_to_column(var = "GeneID") %>%
    dplyr::rename(NES = "stat") %>%
    dplyr::top_n(25, wt = abs(NES)) %>%
    dplyr::arrange(NES) %>% 
    dplyr::mutate(GeneID = factor(GeneID))

ggplot(tf_activities_A549vsCOV2_top25,aes(x = reorder(GeneID, NES), y = NES)) + 
    geom_bar(aes(fill = NES), stat = "identity") +
    scale_fill_gradient2(low = "darkblue", high = "indianred", 
        mid = "whitesmoke", midpoint = 0) + 
    theme_minimal() +
    theme(axis.title = element_text(face = "bold", size = 12),
        axis.text.x = 
            element_text(angle = 45, hjust = 1, size =10, face= "bold"),
        axis.text.y = element_text(size =10, face= "bold"),
        panel.grid.major = element_blank(), 
        panel.grid.minor = element_blank()) +
    xlab("Transcription Factors")
```

![](02_Carnival_Transcriptomics_phosphoprotemicsMann_files/figure-gfm/unnamed-chunk-7-1.png)<!-- -->

### Reading Kinase Activity

We here read the kinase activity computed by Danish Memon
<memon@ebi.ac.uk> from the phosphoproteomics data extracted from the
following publication:

<https://www.biorxiv.org/content/10.1101/2020.06.17.156455v1>

``` r
## We take the kinase activity after 24 hours to be in line with the transcriptomics
## data
DIA_kinase_activity <- read_csv("Mann/diaCovidKinaseActMat.csv") %>% 
    dplyr::rename(kinase = "X1") %>% 
    dplyr::select(kinase, `24h`)
```

    ## Warning: Missing column names filled in: 'X1' [1]

### Generating the Prior Knowledge Network from Omnipath

We use the OmnipathR package to fetch the Omnipath database and generate
the prior knowledge network. We take the signed and directed
protein-protein interactions.

``` r
ia_omnipath <- import_omnipath_interactions() %>% as_tibble()
```

    ## Downloaded 36684 interactions.

``` r
ia_pwextra <- import_pathwayextra_interactions() %>% as_tibble()
```

    ## Downloaded 44955 interactions.

``` r
ia_kinaseextra <- import_kinaseextra_interactions() %>% as_tibble()
```

    ## Downloaded 22338 interactions.

``` r
## We bind the datasets
interactions <- as_tibble(
    bind_rows(
        ia_omnipath %>% mutate(type = 'ppi'),
        ia_pwextra %>% mutate(type = 'ppi'),
        ia_kinaseextra %>% mutate(type = 'ppi')))

signed_directed_interactions <- 
    dplyr::filter(interactions, consensus_direction==1) %>%
    filter(consensus_stimulation == 1 | consensus_inhibition == 1) %>% 
    dplyr::mutate(sign = if_else(consensus_stimulation==1,1,-1))  %>%
    dplyr::select(source_genesymbol, sign,  target_genesymbol) %>%
    dplyr::rename(source ="source_genesymbol", target ="target_genesymbol")

carnival_pkn <- signed_directed_interactions %>%
    dplyr::distinct(source, target, .keep_all = TRUE)

all_source_nodes <- unique(carnival_pkn$source)
all_target_nodes <- unique(carnival_pkn$target)
all_nodes_network <- unique(c(all_source_nodes,all_target_nodes))
```

## Results

We are going to run CARNIVAL twice using the TF activity as the CARNIVAL
measurements and the kinase activities as perturbations. In the second
run, we will additionally use pathway scores from progeny as weights for
the network. For these runs, we are going to select the top 30 TFs and
the top 10 kinases.

``` r
top_10_kinases <- DIA_kinase_activity %>% 
    dplyr::filter(kinase %in% all_source_nodes) %>% 
    dplyr::top_n(10,abs(`24h`)) %>%  
    tibble::column_to_rownames(var = "kinase") %>% 
    t() %>% sign() %>% as.data.frame()

top_30_tf <- tf_activities_A549vsCOV2_stat %>% 
  as.data.frame() %>% 
  rownames_to_column(var = "GeneID") %>%
  dplyr::filter(GeneID %in% all_nodes_network) %>%
  dplyr::arrange(desc(abs(stat))) %>%
  dplyr::top_n(30, wt = abs(stat)) %>%
  column_to_rownames(var = "GeneID") %>%
  t() %>% as.data.frame()

progeny_weigths <- pathways_A549vsCOV2_zscore_inputCarnival %>% 
    as.data.frame() %>% t()
```

### CARNIVAL without progeny weights

``` r
carnival_results_noprogeny <-runCARNIVAL(
    solverPath="/opt/ibm/ILOG/CPLEX_Studio129/cplex/bin/x86-64_linux/cplex",
    netObj=carnival_pkn,
    measObj=top_30_tf,
    inputObj = top_10_kinases,
    # dir_name="Carnival_Results",
    # weightObj=as.data.frame(t(Kin_activity_LNCaP_noInhib_t1_EGF)),
    # nodeID = 'gene',
    timelimit = 900,
    solver = "cplex")
saveRDS(carnival_results_noprogeny, 
    file = "Carnival_Results/carnival_results_noprogeny.rds")
OutputCyto(carnival_results_noprogeny, 
    outputFile="Carnival_Results/carnival_results_noprogeny")
```

Network with the results: Rectangles are the most active transcription
factors after infection and the inverse triangles are the most active
kinases. Ellipses are signaling intermediates proteins linking those
kinsases and TFs. Red means positive activity or overphosphorylation
after infection and blue the opposite.

<br><br> ![](Carnival_Results/carnival_results_noprogenyNetwork.sif.png)
<br><br>

### CARNIVAL with progeny weights

``` r
carnival_results_withprogeny <-runCARNIVAL(
    solverPath="/opt/ibm/ILOG/CPLEX_Studio129/cplex/bin/x86-64_linux/cplex",
    netObj=carnival_pkn,
    measObj=top_30_tf,
    inputObj = top_10_kinases,
    # dir_name="Carnival_Results",
    weightObj=progeny_weigths,
    # nodeID = 'gene',
    timelimit = 900,
    solver = "cplex")
saveRDS(carnival_results_withprogeny, 
    file = "Carnival_Results/carnival_results_withprogeny.rds")
OutputCyto(carnival_results_withprogeny, 
    outputFile="Carnival_Results/carnival_results_withprogeny")
```

<br><br>
![](Carnival_Results/carnival_results_withprogenyNetwork.sif.png)
<br><br>

## Session Info Details

    ## R version 4.0.1 (2020-06-06)
    ## Platform: x86_64-pc-linux-gnu (64-bit)
    ## Running under: Ubuntu 19.10
    ## 
    ## Matrix products: default
    ## BLAS:   /usr/lib/x86_64-linux-gnu/openblas/libblas.so.3
    ## LAPACK: /usr/lib/x86_64-linux-gnu/libopenblasp-r0.3.7.so
    ## 
    ## locale:
    ##  [1] LC_CTYPE=en_GB.UTF-8       LC_NUMERIC=C              
    ##  [3] LC_TIME=en_GB.UTF-8        LC_COLLATE=en_GB.UTF-8    
    ##  [5] LC_MONETARY=en_GB.UTF-8    LC_MESSAGES=en_GB.UTF-8   
    ##  [7] LC_PAPER=en_GB.UTF-8       LC_NAME=C                 
    ##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
    ## [11] LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C       
    ## 
    ## attached base packages:
    ## [1] parallel  stats4    stats     graphics  grDevices utils     datasets 
    ## [8] methods   base     
    ## 
    ## other attached packages:
    ##  [1] ggplot2_3.3.1               tibble_3.0.1               
    ##  [3] tidyr_1.1.0                 dplyr_1.0.0                
    ##  [5] dorothea_1.0.0              progeny_1.11.1             
    ##  [7] OmnipathR_1.3.2             jsonlite_1.6.1             
    ##  [9] igraph_1.2.5                CARNIVAL_1.0.1             
    ## [11] DESeq2_1.28.1               SummarizedExperiment_1.18.1
    ## [13] DelayedArray_0.14.0         matrixStats_0.56.0         
    ## [15] Biobase_2.48.0              GenomicRanges_1.40.0       
    ## [17] GenomeInfoDb_1.24.0         IRanges_2.22.2             
    ## [19] S4Vectors_0.26.1            BiocGenerics_0.34.0        
    ## [21] readr_1.3.1                
    ## 
    ## loaded via a namespace (and not attached):
    ##  [1] segmented_1.1-0        Category_2.54.0        bitops_1.0-6          
    ##  [4] bit64_0.9-7            doParallel_1.0.15      RColorBrewer_1.1-2    
    ##  [7] httr_1.4.1             tools_4.0.1            R6_2.4.1              
    ## [10] KernSmooth_2.23-17     DBI_1.1.0              colorspace_1.4-1      
    ## [13] withr_2.2.0            gridExtra_2.3          tidyselect_1.1.0      
    ## [16] bit_1.1-15.2           curl_4.3               compiler_4.0.1        
    ## [19] graph_1.66.0           labeling_0.3           scales_1.1.1          
    ## [22] genefilter_1.70.0      RBGL_1.64.0            rappdirs_0.3.1        
    ## [25] stringr_1.4.0          digest_0.6.25          mixtools_1.2.0        
    ## [28] rmarkdown_2.2          XVector_0.28.0         pkgconfig_2.0.3       
    ## [31] htmltools_0.4.0        bcellViper_1.24.0      dbplyr_1.4.4          
    ## [34] rlang_0.4.6            RSQLite_2.2.0          farver_2.0.3          
    ## [37] generics_0.0.2         BiocParallel_1.22.0    viper_1.22.0          
    ## [40] RCurl_1.98-1.2         magrittr_1.5           GenomeInfoDbData_1.2.3
    ## [43] Matrix_1.2-18          Rcpp_1.0.4.6           munsell_0.5.0         
    ## [46] lifecycle_0.2.0        stringi_1.4.6          yaml_2.2.1            
    ## [49] UniProt.ws_2.28.0      MASS_7.3-51.6          zlibbioc_1.34.0       
    ## [52] BiocFileCache_1.12.0   grid_4.0.1             blob_1.2.1            
    ## [55] ggrepel_0.8.2          crayon_1.3.4           lattice_0.20-41       
    ## [58] splines_4.0.1          annotate_1.66.0        hms_0.5.3             
    ## [61] locfit_1.5-9.4         knitr_1.28             pillar_1.4.4          
    ## [64] geneplotter_1.66.0     codetools_0.2-16       lpSolve_5.6.15        
    ## [67] XML_3.99-0.3           glue_1.4.1             evaluate_0.14         
    ## [70] vctrs_0.3.1            foreach_1.5.0          gtable_0.3.0          
    ## [73] purrr_0.3.4            kernlab_0.9-29         assertthat_0.2.1      
    ## [76] xfun_0.14              xtable_1.8-4           e1071_1.7-3           
    ## [79] class_7.3-17           survival_3.1-12        iterators_1.0.12      
    ## [82] AnnotationDbi_1.50.0   memoise_1.1.0          ellipsis_0.3.1        
    ## [85] GSEABase_1.50.1