Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
C
comparison-protocols
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Wiki
Requirements
External wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
MFN
camesyn
comparison-protocols
Commits
11aebe6f
Commit
11aebe6f
authored
2 years ago
by
Patrycja Mulica
Browse files
Options
Downloads
Patches
Plain Diff
Update Figure3-4-5/rnaseq_analyses_patrycja.R
parent
cd71637e
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
Figure3-4-5/rnaseq_analyses_patrycja.R
+228
-0
228 additions, 0 deletions
Figure3-4-5/rnaseq_analyses_patrycja.R
with
228 additions
and
0 deletions
Figure3-4-5/rnaseq_analyses_patrycja.R
0 → 100644
+
228
−
0
View file @
11aebe6f
#
# RNA-seq data pre-processing and analysis
#
library
(
'Rsubread'
)
# Rsubread 2.0.1
############################
# Step 1: aligning the reads
############################
# retrieve fastq files
fastq.files
<-
list.files
(
path
=
"/mnt/data/AnneProjects"
,
pattern
=
".fq.gz$"
,
full.names
=
TRUE
,
recursive
=
TRUE
)
# check that all files are present
print
(
fastq.files
)
# replace fq.gz by bam in file name
targets
=
data.frame
(
inputfile
=
fastq.files
,
outputfile
=
gsub
(
"fq.gz"
,
"bam"
,
fastq.files
))
r1files
=
as.matrix
(
targets
$
inputfile
)[
grep
(
"\\_1\\.fq"
,
as.matrix
(
targets
$
inputfile
))]
r2files
=
as.matrix
(
targets
$
inputfile
)[
grep
(
"\\_2\\.fq"
,
as.matrix
(
targets
$
inputfile
))]
outfiles
=
gsub
(
"fq.gz"
,
"bam"
,
gsub
(
"\\_1\\.fq"
,
"\\.fq"
,
r1files
))
align
(
index
=
"new_index"
,
readfile1
=
r1files
,
readfile2
=
r2files
,
output_file
=
as.character
(
outfiles
),
output_format
=
"BAM"
,
nthreads
=
10
)
############################
# Step 2: Quality check
############################
bam.files
<-
list.files
(
path
=
"/mnt/data/AnneProjects"
,
pattern
=
".bam$"
,
full.names
=
TRUE
,
recursive
=
TRUE
)
print
(
bam.files
)
props
<-
propmapped
(
files
=
bam.files
)
print
(
props
)
# Extract quality scores for individual fastq.files (one example)
qs
<-
qualityScores
(
filename
=
fastq.files
[
1
],
nreads
=
100
)
#############################
# Step 3: Determine counts
#############################
# version:
gtf
<-
list.files
(
"./"
,
pattern
=
".*gtf$"
,
full.names
=
T
)
#
# ispairedEnd = TRUE
#
fc
<-
featureCounts
(
files
=
as.character
(
outfiles
),
GTF.featureType
=
"exon"
,
GTF.attrType
=
"gene_name"
,
annot.ext
=
gtf
,
isGTFAnnotationFile
=
TRUE
,
isPairedEnd
=
TRUE
,
nthreads
=
10
)
##############################
# Functions for data analysis
##############################
#
# PLS-DA ploot
#
plsdaplot
=
function
(
combdat
,
phenotype
,
filestr
=
"plsda_plot.pdf"
){
comblab
=
match
(
phenotype
,
unique
(
phenotype
))
comblabunq
=
unique
(
comblab
)
const
=
which
(
apply
(
combdat
,
1
,
var
)
==
0
)
combfilt
=
combdat
if
(
length
(
const
))
combfilt
=
combdat
[
-
const
,]
# variance filter
vars
=
apply
(
combfilt
,
1
,
var
)
var1000
=
order
(
vars
,
decreasing
=
T
)[
1
:
1000
]
source
(
"osplda_rainbow.R"
)
require
(
'bitops'
)
require
(
'pls'
)
mods
<-
make.OSC.PLS.model
(
comblab
,
pls.data
=
as.data.frame
(
t
((
combfilt
[
var1000
,]))),
comp
=
2
,
OSC.comp
=
0
,
validation
=
"LOO"
,
method
=
"oscorespls"
,
cv.scale
=
FALSE
,
progress
=
FALSE
)
pdf
(
filestr
)
plot.OSC.results
(
mods
,
plot
=
"scores"
,
groups
=
phenotype
)
dev.off
()
}
#
# Volcano plot
#
plotvolcano
=
function
(
dat
,
logfc
,
fdr
,
logfc_thresh1
=
1
,
fdr_thresh
=
0.05
,
lablogfc_thresh
=
1.5
,
labfdr_thresh
=
0.001
,
cexlab
=
2
,
filestr
=
"volcano_plot_with_labels.pdf"
)
{
mat
=
data.frame
(
x
=
logfc
,
y
=-
log10
(
fdr
))
matorange
=
data.frame
(
x
=
logfc
,
y
=-
log10
(
fdr
))[
which
(
abs
(
logfc
)
>
logfc_thresh1
),]
matgreen
=
data.frame
(
x
=
logfc
,
y
=-
log10
(
fdr
))[
intersect
(
which
(
fdr
<
fdr_thresh
),
which
(
abs
(
logfc
)
>
logfc_thresh1
)),]
matred
=
data.frame
(
x
=
logfc
,
y
=-
log10
(
fdr
))[
which
(
fdr
<
fdr_thresh
),]
matlab
=
data.frame
(
x
=
logfc
,
y
=-
log10
(
fdr
))[
intersect
(
which
(
fdr
<
labfdr_thresh
),
which
(
abs
(
logfc
)
>
lablogfc_thresh
)),]
topgenes
=
rownames
(
dat
)
matlabels
=
topgenes
[
intersect
(
which
(
fdr
<
labfdr_thresh
),
which
(
abs
(
logfc
)
>
lablogfc_thresh
))]
if
(
!
require
(
'ggrepel'
))
{
install.packages
(
"ggrepel"
)
}
require
(
'ggplot2'
)
# write volcano plot to pdf
pdf
(
filestr
)
p
=
ggplot
(
mat
,
aes
(
x
,
y
))
+
geom_point
(
color
=
'gray'
,
size
=
0.8
,
fill
=
"white"
)
+
theme_classic
(
base_size
=
16
)
+
geom_point
(
data
=
matorange
,
color
=
"orange"
)
+
geom_point
(
data
=
matred
,
color
=
"red"
)
+
geom_point
(
data
=
matgreen
,
color
=
"green"
)
+
geom_text_repel
(
data
=
matlab
,
label
=
matlabels
,
nudge_y
=
0.1
,
size
=
cexlab
)
+
xlab
(
'Log fold change'
)
+
ylab
(
'-log10(P-value)'
)
+
theme
(
axis.text
=
element_text
(
size
=
12
),
axis.title
=
element_text
(
size
=
12
,
face
=
"bold"
))
print
(
p
)
dev.off
()
}
#
# Differential expression analysis
#
differential_analyses
<-
function
(
countsdat
,
condition1_ids
,
condition2_ids
,
condition1_name
,
condition2_name
,
filename_prefix
=
"case_vs_control"
,
logfc_thresh1
=
1
,
use_nominal
=
FALSE
,
fdr_thresh
=
0.05
,
lablogfc_thresh
=
0.5
,
labfdr_thresh
=
0.05
,
cex.axis
=
1
,
filtmean
=
NULL
){
require
(
'DESeq2'
)
# convert outcome variable into factor (e.g. "PD" vs. "control")
outcome
=
c
(
rep
(
condition1_name
,
length
(
condition1_ids
)),
rep
(
condition2_name
,
length
(
condition2_ids
)))
cts
=
countsdat
[,
c
(
condition1_ids
,
condition2_ids
)]
colnames
(
cts
)
=
outcome
coldata
=
factor
(
outcome
,
levels
=
c
(
condition1_name
,
condition2_name
))
names
(
coldata
)
=
outcome
dds
=
DESeqDataSetFromMatrix
(
countData
=
cts
,
colData
=
DataFrame
(
coldata
),
design
=
~
coldata
)
library
(
"edgeR"
)
dge
<-
DGEList
(
counts
=
cts
)
keep
<-
filterByExpr
(
dge
,
design
=
model.matrix
(
~
0
+
outcome
))
dds_filt
<-
dds
[
keep
,]
topgenes_rnaseq
<-
DESeq
(
dds_filt
)
res_case_vs_control
<-
results
(
topgenes_rnaseq
)
res_case_vs_control
<-
as.matrix
(
res_case_vs_control
[
order
(
res_case_vs_control
$
pvalue
),])
if
(
!
is.null
(
filtmean
)){
res_case_vs_control
=
res_case_vs_control
[
-
which
(
res_case_vs_control
[,
1
]
<
filtmean
),]
}
pdf
(
paste
(
filename_prefix
,
"_boxplots_top100.pdf"
,
collapse
=
""
),
width
=
7
,
height
=
7
)
par
(
mfrow
=
c
(
2
,
2
))
for
(
i
in
1
:
100
)
boxplot
(
as.matrix
(
cts
[
match
(
rownames
(
res_case_vs_control
),
rownames
(
cts
))[
i
],])
~
outcome
,
col
=
c
(
"lightblue"
,
"pink"
),
main
=
rownames
(
res_case_vs_control
)[
i
],
ylab
=
"preprocessed expression count"
,
xlab
=
""
,
cex.axis
=
cex.axis
,
outline
=
T
)
dev.off
()
# ranking table
write.xlsx
(
cbind
(
round
(
res_case_vs_control
[,
1
:
4
],
3
),
format
(
res_case_vs_control
[,
5
:
6
],
digits
=
3
)),
paste
(
filename_prefix
,
"_ranking.xlsx"
,
collapse
=
""
))
if
(
!
use_nominal
){
plotvolcano
(
res_case_vs_control
,
res_case_vs_control
[,
"log2FoldChange"
],
res_case_vs_control
[,
"padj"
],
logfc_thresh1
=
logfc_thresh1
,
fdr_thresh
=
fdr_thresh
,
lablogfc_thresh
=
lablogfc_thresh
,
labfdr_thresh
=
labfdr_thresh
,
filestr
=
paste
(
filename_prefix
,
"_volcano_plot_with_labels.pdf"
,
collapse
=
""
))
}
else
{
plotvolcano
(
res_case_vs_control
,
res_case_vs_control
[,
"log2FoldChange"
],
res_case_vs_control
[,
"pvalue"
],
logfc_thresh1
=
logfc_thresh1
,
fdr_thresh
=
fdr_thresh
,
lablogfc_thresh
=
lablogfc_thresh
,
labfdr_thresh
=
labfdr_thresh
,
filestr
=
paste
(
filename_prefix
,
"_volcano_plot_with_labels.pdf"
,
collapse
=
""
))
}
return
(
res_case_vs_control
)
}
##############################
# Astrocyte analysis
##############################
library
(
xlsx
)
astrocytes_annot
<-
xlsx
::
read.xlsx
(
"samples_astrocytes.xlsx"
,
1
)
astrocytes_samp
=
grep
(
"Oksanen|Palm"
,
colnames
(
fc
$
counts
))
phenotype
=
rep
(
"oksanen_t129"
,
length
(
astrocytes_samp
))
phenotype
[
grep
(
"48.*Oksanen"
,
colnames
(
fc
$
counts
)[
astrocytes_samp
])]
=
rep
(
"oksanen_48"
,
length
(
grep
(
"48.*Oksanen"
,
colnames
(
fc
$
counts
)[
astrocytes_samp
])))
phenotype
[
grep
(
"T12.*Palm"
,
colnames
(
fc
$
counts
)[
astrocytes_samp
])]
=
rep
(
"palm_t129"
,
length
(
grep
(
"T12.*Palm"
,
colnames
(
fc
$
counts
)[
astrocytes_samp
])))
phenotype
[
grep
(
"48.*Palm"
,
colnames
(
fc
$
counts
)[
astrocytes_samp
])]
=
rep
(
"palm_48"
,
length
(
grep
(
"48.*Palm"
,
colnames
(
fc
$
counts
)[
astrocytes_samp
])))
print
(
table
(
phenotype
))
#phenotype
# oksanen_48 oksanen_t129 palm_48 palm_t129
# 3 3 3 3
oksanen_t129
=
which
(
phenotype
==
"oksanen_t129"
)
oksanen_48
=
which
(
phenotype
==
"oksanen_48"
)
palm_48
=
which
(
phenotype
==
"palm_48"
)
palm_t129
=
which
(
phenotype
==
"palm_t129"
)
plsdaplot
(
fc
$
counts
[,
astrocytes_samp
],
phenotype
,
filestr
=
"plsda_rnaseq_astrocytes_2022.pdf"
)
##############################
# DESeq2 analysis
##############################
res_oksanen_vs_palm_all
=
differential_analyses
(
fc
$
counts
[,
astrocytes_samp
],
c
(
oksanen_t129
,
oksanen_48
),
c
(
palm_t129
,
palm_48
),
"oksanen"
,
"palm"
,
filename_prefix
=
"oksanen_vs_palm_deseq2_2022"
,
logfc_thresh1
=
1
,
use_nominal
=
F
,
fdr_thresh
=
0.05
,
lablogfc_thresh
=
0.5
,
labfdr_thresh
=
0.05
)
res_t129_vs_48_all
=
differential_analyses
(
fc
$
counts
[,
astrocytes_samp
],
c
(
oksanen_t129
,
palm_t129
),
c
(
oksanen_48
,
palm_48
),
"T12.9"
,
"#48"
,
filename_prefix
=
"t129_vs_48_deseq2_2022"
,
logfc_thresh1
=
1
,
use_nominal
=
F
,
fdr_thresh
=
0.05
,
lablogfc_thresh
=
0.5
,
labfdr_thresh
=
0.05
)
res_t129_oksanen_vs_palm_all
=
differential_analyses
(
fc
$
counts
[,
astrocytes_samp
],
oksanen_t129
,
palm_t129
,
"T12.9_oksanen"
,
"T12.9_palm"
,
filename_prefix
=
"t129_oksanen_vs_palm_deseq2_2022"
,
logfc_thresh1
=
1
,
use_nominal
=
F
,
fdr_thresh
=
0.05
,
lablogfc_thresh
=
0.5
,
labfdr_thresh
=
0.05
)
res_48_oksanen_vs_palm_all
=
differential_analyses
(
fc
$
counts
[,
astrocytes_samp
],
oksanen_48
,
palm_48
,
"#48_oksanen"
,
"#48_palm"
,
filename_prefix
=
"48_oksanen_vs_palm_deseq2_2022"
,
logfc_thresh1
=
1
,
use_nominal
=
F
,
fdr_thresh
=
0.05
,
lablogfc_thresh
=
0.5
,
labfdr_thresh
=
0.05
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment