## Copyright (C) 2020 by University of Luxembourg ## Licensed under the Apache License, Version 2.0 (the "License"); ## you may not use this file except in compliance with the License. ## You may obtain a copy of the License at ## http://www.apache.org/licenses/LICENSE-2.0 ## Unless required by applicable law or agreed to in writing, software ## distributed under the License is distributed on an "AS IS" BASIS, ## WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ## See the License for the specific language governing permissions and ## limitations under the License. ##' @export new_state <- function() { m <- new_conf() init_state(m) } ##' @export new_rv_state <- function() react_v(m=list2rev(new_state())) ##' @export new_state_fn_conf <- function(fn_conf) { m <- new_state() m$conf <- read_conf(fn_conf) init_state(m) } ##' @export run <- function(fn_conf) { m <- new_state_fn_conf(fn_conf) dir.create(m$conf$project, showWarnings = F, recursive = T) m <- withr::with_dir(new=m$conf$project,code = run_in_dir(m)) return(invisible(m)) } ##' @export setup_phase <- function(m) { m <- mk_tol_funcs(m) m <- load_inputs(m) m <- concurrency(m) m } ##' @export run_in_dir <- function(m) { m <- setup_phase(m) m <- mk_comp_tab(m) m <- extr_data(m) m <- prescreen(m) m <- sort_spectra(m) m <- subset_summary(m) m <- create_plots(m) m <- save_plots(m) invisible(m) } ##' @export load_compound_input <- function(m) { coll <- list() fields <- colnames(EMPTY_CMPD_LIST) fns <- m$conf$compounds$lists for (l in 1:length(fns)) { fn <- fns[[l]] fnfields <- colnames(fn) dt <- file2tab(fn, colClasses=c(ID="character", SMILES="character", Formula="character", Name="character", RT="numeric", mz="numeric")) verify_cmpd_l(dt=dt,fn=fn) nonexist <- setdiff(fnfields,fields) coll[[l]] <- if (length(nonexist)==0) dt else dt[,(nonexist) := NULL] coll[[l]]$ORIG <- fn } cmpds <- if (length(fns)>0) rbindlist(l=c(list(EMPTY_CMPD_LIST), coll), use.names = T, fill = T) else EMPTY_CMPD_LIST dups <- duplicated(cmpds$ID) dups <- dups | duplicated(cmpds$ID,fromLast = T) dupIDs <- cmpds$ID[dups] dupfns <- cmpds$ORIG[dups] msg <- "" for (fn in unique(dupfns)) { inds <- which(dupfns %in% fn) fndupID <- paste(dupIDs[inds], collapse = ',') msg <- paste(paste('Duplicate IDs', fndupID,'found in',fn),msg,sep = '\n') } assert(all(!dups), msg = msg) cmpds[,("known"):=.(the_ifelse(!is.na(SMILES),"structure",the_ifelse(!is.na(Formula),"formula","mz")))] m$input$tab$cmpds <- cmpds m$input$tab$setid <- read_setid(m$conf$compounds$sets, m$input$tab$cmpds) m } ##' @export load_data_input <- function(m) { m$input$tab$mzml <- file2tab(m$conf$data) m } ##' @export load_inputs <- function(m) { m <- load_compound_input(m) m <- load_data_input(m) m } ##' @export mk_comp_tab <- function(m) { setid <- m$input$tab$setid setkey(setid,set) mzml<- m$input$tab$mzml setkey(mzml,set) cmpds<-m$input$tab$cmpds setkey(cmpds,ID) mzml[,`:=`(wd=sapply(Files,add_wd_to_mzml,m$conf$project))] assert(nrow(cmpds)>0,msg="No compound lists have been provided.") message("Begin generation of the comprehensive table.") comp <- cmpds[setid,on="ID"][mzml,.(tag,adduct,ID,RT,set,Name,Files,wd,SMILES,Formula,mz,known),on="set",allow.cartesian=T] tab2file(tab=comp,file=paste0("setidmerge",".csv")) setkey(comp,known,set,ID) ## Known structure. ## comp[,`:=`(mz=mapply(calc_mz_from_smiles,SMILES,adduct,ID,USE.NAMES = F))] comp[known=="structure",`:=`(mz=calc_mz_from_smiles(SMILES,adduct,ID))] ## Known formula. comp[known=="formula",`:=`(mz=calc_mz_from_formula(Formula,adduct,ID))] setnames(comp,names(COMP_NAME_MAP), function(o) COMP_NAME_MAP[[o]]) setcolorder(comp,COMP_NAME_FIRST) fn_out <- m$conf$fn_comp tab2file(tab=comp,file=fn_out) message("Generation of comp table finished.") setkeyv(comp,c("set","tag","mz")) m$out$tab$comp <- comp m } verify_compounds <- function(conf) { ## * Existence of input files fns_cmpds <- conf$compounds$lists fn_cmpd_sets <- conf$compounds$sets ## ** Compound lists and sets assert(isThingFile(fn_cmpd_sets), msg=paste("Cannot find the compound sets file:",fn_cmpd_sets)) for (fn in fns_cmpds) { assert(isThingFile(fn), msg=paste("Cannot find compound list:",fn)) } ## * Data files df_sets <- file2tab(fn_cmpd_sets) all_sets<-unique(df_sets$set) return(list(conf=conf,all_sets=all_sets)) } verify_data_df <- function(mzml,all_sets) { no_files <- which(mzml[,!file.exists(Files)]) no_adducts <- which(mzml[,!(adduct %in% names(ADDUCTMAP))]) no_sets <- which(mzml[,!(set %in% all_sets)]) assert(length(no_files)==0,msg = paste("Non-existent data files at rows:",paste(no_files,collapse = ','))) assert(length(no_adducts)==0,msg = paste("Unrecognised adducts at rows:",paste(no_adducts,collapse = ','))) assert(length(no_sets)==0,msg = paste("Unknown sets at rows:",paste(no_sets,collapse = ','))) } verify_data <- function(conf,all_sets) { ## * Existence of input files fn_data <- conf$data assert(isThingFile(fn_data),msg=paste("Data table does not exist:",fn_data)) mzml <- file2tab(fn_data) verify_data_df(mzml=mzml,all_sets) return(conf) } #' @export concurrency <- function(m) { ## Reads the concurrency entry in the config. It is optional, if ## not given, then it is up to the user to define the plan of the ## futures package. If present, it contains at least the `plan' ## specification. It can also contain `workers` entry specifying ## the number of workers. If that entry is absent, the default ## number of workers is NO_WORKERS from the resources.R. workers <- m$conf$concurrency$workers plan <- m$conf$concurrency$plan if (!is.null(plan) && plan!=user) { n <- if (!is.null(workers)) workers else NO_WORKERS if (!is.na(n)) future::plan(plan,workers=workers) else future::plan(plan) m$conf$concurrency$workers <- n } else { m$conf$concurrency$workers <- NA m$conf$concurrency$plan <- "user" } message("plan: ",m$conf$concurrency$plan) message("workers: ",m$conf$concurrency$workers) ## So we can actually debug. m$future <- if (!m$conf$debug) future::future else { message("Debug: futures evaluate as identity") function(x,...) identity(x) } m } #' @export mk_tol_funcs <- function(m) { ## Depending on units given when the user specified the errors, ## generate functions that calculate errors given the concrete ## mass. ## Mass errors can be either in ppm, or Da. ## Time errors in min, or s. ## The mass error calculation functions and the retention time ## error in minutes are in m$extr$tol. ## TODO make these things compatible with futures. m$extr$tol$coarse <- gen_mz_err_f(m$conf$tolerance[["ms1 coarse"]], "ms1 coarse error: Only ppm, or Da units allowed." ) m$extr$tol$fine <- gen_mz_err_f(m$conf$tolerance[["ms1 fine"]], "ms1 fine error: Only ppm, or Da units allowed.") m$extr$tol$eic <- gen_mz_err_f(m$conf$tolerance$eic, "eic error: Only ppm, or Da units allowed.") m$extr$tol$rt <- gen_rt_err(m$conf$tolerance$rt, "rt error: Only s(econds), or min(utes) allowed.") m } ##' @export extr_data <- function(m) { ## Reduce the comp table to only unique masses (this is because ## different sets can have same masses). m$out$tab$data <- m$out$tab$comp[,head(.SD,1),by=c('adduct','tag','ID')] m$out$tab$data[,set:=NULL] #This column is meaningless now. files <- m$out$tab$data[,unique(Files)] allCEs <- do.call(c,args=lapply(files,function(fn) { z <- MSnbase::readMSData(files=fn,msLevel = c(1,2),mode="onDisk") unique(MSnbase::collisionEnergy(z),fromLast=T) })) allCEs <- unique(allCEs) allCEs <- allCEs[!is.na(allCEs)] cols <-paste('CE',allCEs,sep = '') vals <- rep(NA,length(cols)) m$out$tab$data[,(cols) := .(rep(NA,.N))] files <- m$out$tab$data[,unique(Files)] ftags <- m$out$tab$data[,.(tag=unique(tag)),by=Files] futuref <- m$future tmp <- lapply(1:nrow(ftags),function(ii) { fn <- ftags[ii,Files] tag <- ftags[ii,tag] tab <- as.data.frame(data.table::copy(m$out$tab$data[,.(Files,adduct,mz,rt,ID)])) ## err_ms1_eic <- m$extr$tol$eic ## err_coarse_fun <- m$extr$tol$coarse ## err_fine_fun <- m$extr$tol$fine ## err_rt <- m$extr$tol$rt err_coarse <- m$conf$tolerance[["ms1 coarse"]] err_fine <- m$conf$tolerance[["ms1 fine"]] err_ms1_eic <- m$conf$tolerance$eic err_rt <- m$conf$tolerance$rt x <- futuref(extract(fn=fn, tab=tab, err_ms1_eic=err_ms1_eic, err_coarse = err_coarse, err_fine= err_fine, err_rt= err_rt), lazy = T) x }) msk <- sapply(tmp,future::resolved) curr_done <- which(msk) for (x in curr_done) { message("Done extraction for ", unique(future::value(tmp[[x]])$Files)) } while (!all(msk)) { msk <- sapply(tmp,future::resolved) newly_done <- which(msk) for (x in setdiff(newly_done,curr_done)) { message("Done extraction for ", unique(future::value(tmp[[x]])$Files)) } Sys.sleep(0.5) curr_done <- newly_done } ztmp <- lapply(tmp,future::value) ## ## We need to add in Files (after futures are resolved). ## for (nn in 1:nrow(ftags)) { ## fn <- ftags[nn,Files] ## ztmp[[nn]]$Files <- fn ## } m$extr$ms <- data.table::rbindlist(ztmp) message('Saving extracted data to ', m$extr$fn) saveRDS(object = m$extr, file = m$extr$fn) message('Done saving extracted data.') m$extr$tmp <- NULL m } ##' @export conf_trans <- function(conf) { conf$prescreen <- conf_trans_pres(conf$prescreen) conf } ##' @export prescreen <- function(m) { ## Top-level auto prescreening function. confpres <- conf_trans_pres(m$conf$prescreen) ## TODO need to fix max spec intensity gen_ms2_spec_tab <- function(ms) {data.table::rbindlist(lapply(1:nrow(ms), function (nr) { adduct <- ms$adduct[[nr]] ID <- ms$ID[[nr]] Files <- ms$Files[[nr]] spec <- ms$spec[[nr]] ms2_sel <- ms$ms2_sel[[nr]] dt <- if (length(spec[[1]]) < 3) dtable(CE=NA_real_, rt=NA_real_, spec=list(dtable(mz=NA_real_,intensity=NA_real_)), ms2_sel=NA) else { dtable( CE=sapply(spec, function (x) x$CE), rt=sapply(spec, function (x) x$rt), spec=lapply(spec, function (x) x$spec), ms2_sel=F) } if (!is.na(ms2_sel)) dt$ms2_sel[[ms2_sel]] <- T dt$Files <- Files dt$ID <- ID dt$adduct <- adduct dt[,ms2_max_int := .(sapply(spec,function (sp) sp[,max(intensity)]))] dt }))} gen_ms1_spec_tab <- function(ms) { cols <- MS1_SPEC_COLS ms[,..cols] } m$qa <- create_qa_table(m$extr$ms,confpres) mms1 <- assess_ms1(m) m <- assess_ms2(mms1) fields <- c("Files","adduct","ID",QA_COLS) m$out$tab$ms2_spec <- gen_ms2_spec_tab(m$qa$ms) m$out$tab$ms1_spec <- gen_ms1_spec_tab(m$qa$ms) m$out$tab$summ <- merge(m$out$tab$comp,m$qa$ms[,..fields],by=c("Files","adduct","ID")) data.table::setkeyv(m$out$tab$ms2_spec,c("adduct","Files","ID")) data.table::setkeyv(m$out$tab$ms1_spec,c("adduct","Files","ID")) m } ##' Sets the key specified by DEF_KEY_SUMM and adds second indices, ##' either from DEF_INDEX_SUMM, or user-specified in ##' conf[["summary table"]]$order. The order entry is a list of ##' strings with names of columns in summ, optionally prefixed with a ##' minus(-) sign. Columns prefixed with the minus are going to be in ##' ascending order. ##' ##' @title Sort the Summary Table ##' @param m ##' @return m ##' @author Todor Kondić ##' @export sort_spectra <- function(m) { ## Sorts the summary table (summ) in order specified either in ## `order spectra` sublist of m$conf, or if that is null, the ## DEF_INDEX_SUMM. ## Here set default sorting keys. data.table::setkeyv(m$out$tab$summ,DEF_KEY_SUMM) ## Now, add secondary indexing. cols <- if (!is.null(m$conf[["summary table"]]$order)) m$conf[["summary table"]]$order else DEF_INDEX_SUMM idx <- gsub("^\\s*-\\s*","",cols) #We need only column names for #now, so remove minuses where #needed. assertthat::assert_that(all(idx %in% colnames(m$out$tab$summ)),msg = "Some column(s) in order key in conf file does not exist in the summary table.") data.table::setindexv(m$out$tab$summ,idx) ## Now we order based on either summary table order subkey, or ## DEF_ORDER_SUMM tmp <- quote(data.table::setorder()) tmp[[2]] <- quote(m$out$tab$summ) for (n in 1:length(cols)) tmp[[2+n]] <- parse(text=cols[[n]])[[1]] message("Ordering expression: ",tmp) eval(tmp) #Execute the setorder call m } ##' Subsets the summary table by applying conditions set out in the ##' filter subkey of summary table key of the config. Each member of ##' filter is an expression that and all of them are chained together ##' using AND logical operation and applied to the summary table. ##' ##' ##' @title Subset the Summary Table ##' @param m ##' @return m ##' @author Todor Kondić ##' @export subset_summary <- function(m) { filt <- m$conf[["summary table"]]$filter m$out$tab$flt_summ <- if (!is.null(filt)) { tmp <- lapply(filt, function (x) parse(text = x)[[1]]) expr <- Reduce(function (x,y) {z<-call("&");z[[2]]<-x;z[[3]]<-y;z},x=tmp) message("Filtering with: ",deparse(bquote(m$out$tab$summ[.(expr)]))) eval(bquote(m$out$tab$summ[.(expr)])) } else m$out$tab$summ m } #' @export create_plots <- function(m) { ## Helpers textf <- ggplot2::element_text x <- m$out$tab$ms1_spec y <- m$out$tab$flt_summ ## Logarithmic, or linear y axis? scale_y_ms1_eic <- if (shiny::isTruthy(m$conf$logaxes$ms1_eic_int)) ggplot2::scale_y_log10 else ggplot2::scale_y_continuous scale_y_ms2_eic <- if (shiny::isTruthy(m$conf$logaxes$ms2_eic_int)) ggplot2::scale_y_log10 else ggplot2::scale_y_continuous scale_y_ms2_spec <- if (shiny::isTruthy(m$conf$logaxes$ms2_spec_int)) ggplot2::scale_y_log10 else ggplot2::scale_y_continuous ## Colour palette. tags <- y[,unique(tag)] getpal <- colorRampPalette(RColorBrewer::brewer.pal(8,"Dark2")) col_all_vals <- getpal(length(tags)) names(col_all_vals) <- tags scale_colour <- function(values=col_all_vals,...) ggplot2::scale_colour_manual(values = values,name=m$conf$figures[["legend title"]],...) rt_lim <- DEFAULT_RT_RANGE if (!is.null(m$conf$figures$rt_min)) rt_lim[[1]] <- m$conf$figures$rt_min if (!is.null(m$conf$figures$rt_max)) rt_lim[[2]] <- m$conf$figures$rt_max my_coord <- ggplot2::coord_cartesian(xlim = rt_lim) conf_psub <- m$conf$figures[["plot subset"]] psub <- if (!is.null(conf_psub)) conf_psub else FIG_DEF_SUBSET assertthat::assert_that(all(psub %in% colnames(y)), msg = "Some plot subset columns are not recognised.") mk_title<-function(txt, mass) paste(txt," ", "m/z = ", formatC(mass,format='f',digits=M_DIGITS),sep='') mk_leg_lab<-function(tag,rt) {if (length(tag) > 0) paste(tag,"; rt= ",formatC(rt,format='f',digits=RT_DIGITS)," min",sep='') else character(0)} sci10<-function(x) {ifelse(x==0, "0", parse(text=gsub("[+]", "", gsub("e", " %*% 10^", scales::scientific_format()(x)))))} my_theme <- function (...) ggplot2::theme() plot_eic_ms1 <- function(df) { mz <- df[,unique(mz)] ID <- df[,unique(ID)] tbl <- df[,.(labs=mk_leg_lab(tag,rt_peak),tag=tag),by=c("tag","rt_peak")] labs <- tbl[,labs] tags <- tbl[,tag] df[,tag:=factor(tag)] ggplot2::ggplot(df,ggplot2::aes(x=rt,y=intensity,colour=tag)) + ggplot2::geom_line(key_glyph=KEY_GLYPH) + ggplot2::labs(x=CHR_GRAM_X, y=CHR_GRAM_Y ## title=mk_title("EIC", mz), ## tag=ID ) + scale_y_ms1_eic(labels=sci10) + scale_colour(values=col_all_vals[as.character(tags)]) + my_coord + my_theme() } plot_eic_ms2 <- function(df) { mz <- df[,unique(mz)] ID <- df[,unique(ID)] ddf <- df[!is.na(rt)==T] ## df[,tag:=factor(tag)] ggplot2::ggplot(ddf,ggplot2::aes(x=rt,ymin=0,ymax=ms2_max_int,color=tag)) + ggplot2::geom_linerange(key_glyph=KEY_GLYPH) + ggplot2::labs(x=CHR_GRAM_X, y=CHR_GRAM_Y ## title=mk_title("MS2 EIC for precursor",mz), ## tag=ID ) + scale_y_ms2_eic(labels=sci10) + scale_colour(values=col_all_vals[as.character(ddf$tag)]) + my_coord + my_theme() } plot_spec_ms2 <- function(df) { ddf <- df[ms2_sel == T] mz <- ddf[,unique(mz)] ID <- ddf[,unique(ID)] tags <- ddf[,tag] specs <- ddf[,spec] rts <- ddf[,rt] lst <- Map(function(d,t) {d$tag<-t;d},specs,tags) data <- dtable(mz=numeric(0),intensity=numeric(0),tag=factor(0)) data <- rbind(data, data.table::rbindlist(lst), fill=T) data <- data[!(is.na(mz)),] leglabs <- mk_leg_lab(tags,rts) ggplot2::ggplot(data,ggplot2::aes(x=mz,ymin=0,ymax=intensity,color=tag)) + ggplot2::geom_linerange(key_glyph=KEY_GLYPH) + ggplot2::labs(x="mz", y="intensity" ## tag=ID, ## title=mk_title("MS2 spectrum for precursor",mz) ) + scale_y_ms2_spec(labels=sci10) + scale_colour(values=col_all_vals[as.character(tags)]) + my_theme() } ## MS1 tmp <- y[x,.(set,adduct,Files,ID,tag,mz,rt_peak=i.ms1_rt,eicMS1=lapply(i.eicMS1,list)), on=c("adduct","Files","ID"),nomatch=NULL] message("Start generating MS1 EICs.") z <- tmp[,.(fig= { df <- .SD[,data.table::rbindlist(Map(function (a,b,c) { s <- a[[1]] s$tag <- b s$rt_peak <- c s},eicMS1,tag,rt_peak))] df$mz <- .SD[,unique(mz)] df$ID <- .SD[,unique(ID)] list(plot_eic_ms1(df)) }),by=psub,.SDcols=c("eicMS1","tag","mz","ID")] message("Done generating MS1 EICs.") structab <- z[,.(ID=unique(ID))] structab <- m$out$tab$comp[known=="structure",][structab,.(ID=i.ID,SMILES=SMILES),on="ID",nomatch=NULL,mult="first"] message("Start generating structures.") structab[,structimg:=.(lapply(SMILES,function (sm) smiles2img(sm,width = 500,height = 500, zoom = 4.5)))] message("Done generating structures.") q <- structab[z,on="ID"][,c("structfig") := .(Map(function (st,eic) { df <- eic[[1]]$data ddf <- dtable(x=df$rt, y=df$intensity) ggplot2::ggplot(ddf) + ggplot2::geom_blank() + ggplot2::annotation_custom(st) + ggplot2::theme_void() }, structimg, fig))] m$out$tab$ms1_plot_eic <- q[,structimg:=NULL] data.table::setkeyv(m$out$tab$ms1_plot_eic,c("set","adduct","ID")) ## MS2 x <- m$out$tab$ms2_spec tmp <- y[x,.(set,adduct,Files, ID=ID,tag=factor(tag),mz,CE=i.CE, rt=i.rt,ms2_max_int, spec=i.spec, ms2_sel=i.ms2_sel), on = c("adduct","Files","ID")] message("Start generating MS2 EICs.") m$out$tab$ms2_plot <- tmp[,.(fig_eic = list(plot_eic_ms2(.SD)), fig_spec = list(plot_spec_ms2(.SD))), .SDcols=c("rt","ms2_max_int", "tag","spec","ms2_sel","mz","ID"), by = psub] message("Done generating MS2 EICs.") data.table::setkeyv(m$out$tab$ms2_plot,c("set","adduct","ID")) m } #' @export save_plots <- function(m) { topdir <- FIG_TOPDIR dir.create(topdir,showWarnings = F) rt_lim <- DEFAULT_RT_RANGE if (!is.null(m$conf$figures$rt_min)) rt_lim[[1]] <- m$conf$figures$rt_min if (!is.null(m$conf$figures$rt_max)) rt_lim[[2]] <- m$conf$figures$rt_max my_theme <- function(...) ggplot2::theme(legend.position = "none",...) clean_range<-function(def,rng) { x1 <- rng[1] x2 <- rng[2] if (is.na(x1) || x1 == 0) x1 <- def[1] if (is.na(x2) || x2 == 0) x2 <- def[2] c(x1,x2) } sets <- m$out$tab$flt_summ[,unique(set)] for (s in sets) { sdf <- m$out$tab$flt_summ[set==s,] group <- sdf[,unique(adduct)] for (g in group) { asdf <- sdf[adduct==g,] ids <- asdf[,unique(ID)] for (id in ids) { message("Image ","set: ",s," group: ", g, " id: ",id) tab <- asdf[ID==id,.(tag,ms1_int,ms1_rt,adduct,mz)] ms1_figs <- m$out$tab$ms1_plot_eic[set==s & adduct==g & ID==id,.(fig,structfig)] ms2_figs <- m$out$tab$ms2_plot[set==s & adduct==g & ID==id,.(fig_eic,fig_spec)] ms1_eic <- ms1_figs$fig[[1]] rt_rng <- range(ms1_eic$data[,rt]) if (!is.na(rt_lim[[1]])) rt_rng[[1]] <- rt_lim[[1]] if (!is.na(rt_lim[[2]])) rt_rng[[2]] <- rt_lim[[2]] my_coord <- ggplot2::coord_cartesian(xlim = rt_rng) ms2_eic <- ms2_figs$fig_eic[[1]]+my_coord #ggplot2::coord_cartesian(xlim = rt_rng) ms2_spec <- ms2_figs$fig_spec[[1]] xxdf <- ms1_figs$fig[[1]]$data[,.(rt=rt,intensity=intensity)] empty_fig <- ggplot2::ggplot(xxdf,ggplot2::aes(x=rt,y=intensity)) + ggplot2::geom_blank() + ggplot2::theme_void() ## if (id == 1078) browser() if (NROW(ms2_eic$data) == 0) ms2_eic <- empty_fig if (NROW(ms2_spec$data) == 0) ms2_spec <- empty_fig leg <- cowplot::get_legend(ms1_eic) big_fig <- cowplot::plot_grid(ms1_eic+my_theme(), ms1_figs$structfig[[1]], ms2_eic+my_theme(), empty_fig, ms2_spec+my_theme(),leg, align = "hv", axis='l', ncol = 2, nrow = 3, rel_widths = c(2,1)) ggplot2::ggsave(plot=big_fig,filename = fig_path(top=topdir, set=s, group=g, id=id, suff="all")) } } } m } #' @export report <- function(m) { figtopdir <- FIG_TOPDIR #file.path(m$conf$project,FIG_TOPDIR) pander::evalsOptions("graph.output","pdf") author <- if (!is.null(m$conf$report$author)) m$conf$report$author else REPORT_AUTHOR title <- if (!is.null(m$conf$report$title)) m$conf$report$title else REPORT_TITLE doc <- pander::Pandoc$new(author,title) doc$add(pander::pandoc.header.return("Plots",level = 1)) sets <- m$out$tab$flt_summ[,unique(set)] rep_theme <- ggplot2::labs(title = NULL) for (s in sets) { doc$add(pander::pandoc.header.return(paste('Set', s), level = 2)) sdf <- m$out$tab$flt_summ[set==s,] group <- sdf[,unique(adduct)] for (g in group) { asdf <- sdf[adduct==g,] ids <- asdf[,unique(ID)] for (id in ids) { message("Image ","set: ",s," group: ", g, " id: ",id) doc$add(pander::pandoc.header.return(paste('ID',id),level = 3)) tab <- asdf[ID==id,.(tag,ms1_int,ms1_rt,adduct,mz,Files)] ms2info <- m$out$tab$ms2_spec[adduct==g & ID==id,.(Files,ID,rt,ms2_max_int)] tab2 <- tab[ms2info,on="Files"][,.(tag,mz,adduct,"$RT_{ms1}$[min]"=ms1_rt,"$RT_{ms2}$[min]"=rt,"$I{ms1}$"=formatC(ms1_int, format="e",digits = 2), "$I(ms2)$"= formatC(ms2_max_int, format="e",digits = 2))] data.table::setorderv(tab2,c("$I{ms1}$","$I(ms2)$"),c(-1,-1)) doc$add.paragraph("") figpath <- fig_path(top=figtopdir,set=s,group=g,id=id,suff="all",ext="pdf") doc$add(pander::pandoc.image.return(img=paste0("file:",figpath))) doc$add.paragraph("") message("Adding table.") doc$add.paragraph(pander::pandoc.table.return(tab2)) message("Done adding table.") ## doc$add(print(tab)) doc$add.paragraph("") } } } doc$add(pander::pandoc.header.return("Appendix", level = 1)) doc$add(pander::pandoc.header.return("Configuration",level = 2)) doc$add(m$conf) doc$add(pander::pandoc.header.return("R Session Info",level = 2)) doc$add(sessionInfo()) m$out$report <- doc m$out$report$export('report.pdf') m }