screening.jl 9.33 KB
Newer Older
Miroslav Kratochvil's avatar
Miroslav Kratochvil committed
1

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
"""
    _check_screen_mods_args(mods, args, modsname)

Internal helper to check the presence and shape of modification and argument
arrays in [`screen`](@ref) and pals.
"""
function _check_screen_mods_args(
    mods::Maybe{Array{V,N}},
    args::Maybe{Array{A,N}},
    modsname,
) where {V,A,N}
    if isnothing(mods)
        if isnothing(args)
            throw(
                DomainError(
                    args,
                    "at least one of `$modsname` and `args` must be non-empty",
                ),
            )
        end
        ([[] for _ in args], Array{A,N}(args))
    elseif isnothing(args)
        (Array{V,N}(mods), [() for _ in mods])
    else
        if size(mods) != size(args)
            throw(
                DomainError(
                    "$(size(mods)) != $(size(args))",
                    "sizes of `$modsname` and `args` differ",
                ),
            )
        end
    end
end

Miroslav Kratochvil's avatar
Miroslav Kratochvil committed
37
38
39
40
41
"""
    function screen(
        model::MetabolicModel;
        variants::Maybe{Array{V,N}} = nothing,
        analysis,
42
        args::Maybe{Array{A,N}} = nothing,
Miroslav Kratochvil's avatar
Miroslav Kratochvil committed
43
        workers = [myid()],
44
    )::Array where {V<:AbstractVector,A,N}
Miroslav Kratochvil's avatar
Miroslav Kratochvil committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

Take an array of model-modifying function vectors in `variants`, and execute
the function `analysis` on all variants of the `model` specified by `variants`.
The computation is distributed over worker IDs in `workers`. If `args` are
supplied (as an array of the same size as the `variants`), they are forwarded
as arguments to the corresponding analysis function calls.

The array of variants must contain vectors of single-parameter functions, these
are applied to model in order. The functions must *not* modify the model, but
rather return a modified copy. The copy should be made as shallow as possible,
to increase memory efficiency of the process. Variant generators that modify
the argument model in-place will cause unpredictable results. Refer to the
definition of [`screen_variant`](@ref) for details.

The function `analysis` will receive a single argument (the modified model),
60
61
62
63
together with arguments from `args` expanded by `...`. Supply an array of
tuples or vectors to pass in multiple arguments to each function. If the
argument values should be left intact (not expanded to multiple arguments),
they must be wrapped in single-item tuple or vector.
Miroslav Kratochvil's avatar
Miroslav Kratochvil committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

The modification and analysis functions are transferred to `workers` as-is; all
packages required to run them (e.g. the optimization solvers) must be loaded
there. Typically, you want to use the macro `@everywhere using
MyFavoriteSolver` from `Distributed` package for loading the solvers.

# Return value

The results of running `analysis` are collected in to the resulting array, in a
way that preserves the shape of the `variants`, similarly as with `pmap`.

The results of `analysis` function must be serializable, preferably made only
from pure Julia structures, because they may be transferred over the network
between the computation nodes. For that reason, functions that return whole
JuMP models that contain pointers to allocated C structures (such as
[`flux_balance_analysis`](@ref) used with `GLPK` or `Gurobi` otimizers) will
generally not in this context.

# Example
```
function reverse_reaction(i::Int)
    (model::CoreModel) -> begin
        mod = copy(model)
        mod.S[:,i] .*= -1   # this is unrealistic but sufficient for demonstration
        mod
    end
end

m = load_model(CoreModel, "e_coli_core.xml")

screen_variants(m,
           [
               [reverse_reaction(5)],
               [reverse_reaction(3), reverse_reaction(6)]
           ],
           mod -> mod.S[:,3])  # observe the changes in S

screen_variants(m,
    [
        [reverse_reaction(5)],
        [reverse_reaction(3), reverse_reaction(6)]
    ],
    mod -> flux_balance_analysis_vec(mod, GLPK.Optimizer))  # run analysis
Miroslav Kratochvil's avatar
Miroslav Kratochvil committed
107
```
Miroslav Kratochvil's avatar
Miroslav Kratochvil committed
108
109
110
111
112
"""
function screen(
    model::MetabolicModel;
    variants::Maybe{Array{V,N}} = nothing,
    analysis,
113
    args::Maybe{Array{A,N}} = nothing,
Miroslav Kratochvil's avatar
Miroslav Kratochvil committed
114
    workers = [myid()],
115
116
117
)::Array where {V<:AbstractVector,A,N}

    (variants, args) = _check_screen_mods_args(variants, args, :variants)
Miroslav Kratochvil's avatar
Miroslav Kratochvil committed
118
119
120

    map(fetch, save_at.(workers, :cobrexa_screen_variants_model, Ref(model)))
    map(fetch, save_at.(workers, :cobrexa_screen_variants_analysis_fn, Ref(analysis)))
Miroslav Kratochvil's avatar
Miroslav Kratochvil committed
121
    map(fetch, get_from.(workers, Ref(:(precache!(cobrexa_screen_variants_model)))))
Miroslav Kratochvil's avatar
Miroslav Kratochvil committed
122

123
124
125
126
127
128
129
    res = pmap(
        (vars, args)::Tuple -> screen_variant(
            (@remote cobrexa_screen_variants_model),
            vars,
            (@remote cobrexa_screen_variants_analysis_fn),
            args,
        ),
Miroslav Kratochvil's avatar
Miroslav Kratochvil committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
        CachingPool(workers),
        zip(variants, args),
    )

    map(fetch, remove_from.(workers, :cobrexa_screen_variants_model))
    map(fetch, remove_from.(workers, :cobrexa_screen_variants_analysis_fn))

    return res
end

"""
    screen_variant(model::MetabolicModel, variant::Vector, analysis, args = ())

Helper function for [`screen`](@ref) that applies all single-argument
functions in `variant` to the `model` (in order from "first" to
"last"), and executes `analysis` on the result.

Can be used to test model variants locally.
"""
function screen_variant(model::MetabolicModel, variant::Vector, analysis, args = ())
    for fn in variant
        model = fn(model)
    end
    analysis(model, args...)
end

"""
    screen_variants(model, variants, analysis; workers=[myid()])

A shortcut for [`screen`](@ref) that only works with model variants.
"""
screen_variants(model, variants, analysis; workers = [myid()]) =
    screen(model; variants = variants, analysis = analysis, workers = workers)
163

Miroslav Kratochvil's avatar
Miroslav Kratochvil committed
164
165
166
167
168
169
"""
    screen_optimize_objective(_, optmodel)::Union{Float64,Nothing}

A variant of [`optimize_objective`](@ref) directly usable in
[`screen_optmodel_modifications`](@ref).
"""
170
screen_optimize_objective(_, optmodel)::Maybe{Float64} = optimize_objective(optmodel)
171

172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
"""
    _screen_optmodel_prepare(model, optimizer, common_modifications)

Internal helper for [`screen_optmodel_modifications`](@ref) that creates the
model and applies the modifications.
"""
function _screen_optmodel_prepare(model, optimizer, common_modifications)
    precache!(model)
    optmodel = make_optimization_model(model, optimizer)
    for mod in common_modifications
        mod(model, optmodel)
    end
    return (model, optmodel)
end

"""
    _screen_optmodel_item((mods, args))

Internal helper for [`screen_optmodel_modifications`](@ref) that computes one
item of the screening task.
"""
function _screen_optmodel_item((mods, args))
    (model, optmodel) = @remote cobrexa_screen_optmodel_modifications_data
    for mod in mods
        mod(model, optmodel)
    end
    (@remote cobrexa_screen_optmodel_modifications_fn)(model, optmodel, args...)
end

Miroslav Kratochvil's avatar
Miroslav Kratochvil committed
201
"""
202
    function screen_optmodel_modifications(
Miroslav Kratochvil's avatar
Miroslav Kratochvil committed
203
204
        model::MetabolicModel,
        optimizer;
205
206
207
        common_modifications::V,
        modifications::Maybe{Array{V,N}} = nothing,
        args::Maybe{Array{T,N}} = nothing,
Miroslav Kratochvil's avatar
Miroslav Kratochvil committed
208
209
        analysis = screen_optimize_objective,
        workers = [myid()],
210
    ) where {V<:AbstractVector,T<:Tuple,N}
Miroslav Kratochvil's avatar
Miroslav Kratochvil committed
211
212
213
214
215

Screen multiple modifications of the same optimization model.

This function is potentially more efficient than [`screen`](@ref) because it
avoids making variants of the model structure and remaking of the optimization
216
217
218
model. On the other hand, modification functions need to keep the optimization
model in a recoverable state (one that leaves the model usable for the next
modification), which limits the possible spectrum of modifications applied.
Miroslav Kratochvil's avatar
Miroslav Kratochvil committed
219
220

Internally, `model` is distributed to `workers` and transformed into the
221
222
223
224
225
226
optimization model using [`make_optimization_model`](@ref).
`common_modifications` are applied to the models at that point. Next, vectors
of functions in `modifications` are consecutively applied, and the result of
`analysis` function called on model are collected to an array of the same
extent as `modifications`. Calls of `analysis` are optionally supplied with
extra arguments from `args` expanded with `...`, just like in [`screen`](@ref).
Miroslav Kratochvil's avatar
Miroslav Kratochvil committed
227
228

Both the modification functions (in vectors) and the analysis function here
229
230
231
have 2 base parameters (as opposed to 1 with [`screen`](@ref)): first is the
`model` (carried through as-is), second is the prepared JuMP optimization model
that may be modified and acted upon. As an example, you can use modification
Miroslav Kratochvil's avatar
Miroslav Kratochvil committed
232
233
[`change_constraint`](@ref) and analysis [`screen_optimize_objective`](@ref).
"""
234
function screen_optmodel_modifications(
Miroslav Kratochvil's avatar
Miroslav Kratochvil committed
235
    model::MetabolicModel,
236
    optimizer;
237
238
239
240
    common_modifications::Vector = [],
    modifications::Maybe{Array{V,N}} = nothing,
    args::Maybe{Array{A,N}} = nothing,
    analysis::Any,
241
    workers = [myid()],
242
243
244
245
) where {V<:AbstractVector,A,N}

    (modifications, args) = _check_screen_mods_args(modifications, args, :modifications)

246
247
    map(
        fetch,
248
249
250
251
252
253
254
255
256
257
258
        save_at.(
            workers,
            :cobrexa_screen_optmodel_modifications_data,
            Ref(
                :($COBREXA._screen_optmodel_prepare(
                    $model,
                    $optimizer,
                    $common_modifications,
                )),
            ),
        ),
259
260
261
    )
    map(fetch, save_at.(workers, :cobrexa_screen_optmodel_modifications_fn, Ref(analysis)))

262
    res = pmap(_screen_optmodel_item, CachingPool(workers), zip(modifications, args))
263
264
265
266
267
268

    map(fetch, remove_from.(workers, :cobrexa_screen_optmodel_modifications_data))
    map(fetch, remove_from.(workers, :cobrexa_screen_optmodel_modifications_fn))

    return res
end