library(ggplot2)
library(pheatmap)
library(RColorBrewer)
library(tidyverse)
library(ggpubr)
library(ggsignif)
library(openxlsx)
library(viridis)
library(jcolors)
library(stringr)
setwd("//atlas.uni.lux/users/isabel.rosety/GBA/GCase activity/Plots")
The working directory was changed to //atlas.uni.lux/users/isabel.rosety/GBA/GCase activity/Plots inside a notebook chunk. The working directory will be reset when the chunk is finished running. Use the knitr root.dir option in the setup chunk to change the working directory for notebook chunks.
data <- read_excel("//atlas.uni.lux/LCSB_Cellular_Biology/16-Our Papers/In Preparation/GBA hMO_Isabel/Figures/Fig1/Partials/B//Quantification/20210910_GCase activity results.xlsx",sheet=3)
#Normalize to mean of controls for one feature
dataN <-data %>%
group_by(Batch, Condition) %>%
mutate(Gcase_activity=Gcase_activity/mean(data$Gcase_activity[data$Condition=="CTRL"]/100,na.rm = TRUE))
write.csv(dataN, file = 'Data as Percentage of controls.csv')
dataN <- read.csv("Data as Percentage of controls.csv")
dataN<-as.data.frame(dataN)
Plot for one feature
dataN%>%
ggplot(aes(x = Condition, y=Gcase_activity),ordered=TRUE)+
geom_boxplot(aes(fill=Condition),show.legend = FALSE,width=0.7)+
#scale_fill_manual(values=c("#2171b5","#B22222","#008B8B"))+ #blue and red
scale_fill_manual(values= c("#FFFFFF","#999999"),name = "Condition", guide = "none")+ #guide false will remove the legend for the condition
#ylim(4,9)+
#geom_boxplot(width=0.07, fill="white") +
geom_point(aes(color=CellLine),size=3,show.legend = T,alpha = 0.5)+
#scale_color_manual(values = rev(brewer.pal(n=6, name="OrRd")))+
scale_color_jcolors("pal7")+
#scale_color_viridis(option = "D", discrete=TRUE)+
#geom_point(shape = 1,size = 3,colour = "black")+
theme(legend.key=element_blank()) +
geom_signif(comparisons = list(c("CTRL", "GBA-PD")), test='wilcox.test',
vjust=0.5, size=0.5, textsize=9, map_signif_level=c("***"=0.001, "**"=0.01, "*"=0.05, " "=2) ) +
#facet_grid(~fct_relevel(Day, "d30","d60"), scales="free") +
labs(x ="",
y = "Relative GCase activity",
fill = "Condition",
title = "GCase activity") +
theme_bw() +
theme(
axis.line = element_line(colour = 'black', size = 1) ,
axis.title.x = element_blank(),
axis.text.x = element_text(size=21, color="black"),
axis.title.y = element_text(size = 21),
axis.text.y = element_text(size=15, color="black"),
axis.ticks.y = element_line(),
axis.ticks.length=unit(.25, "cm"),
#change legend text font size)
#legend.key.size = unit(0.7, "cm"),
#legend.key.width = unit(0.6,"cm"),
legend.key=element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.border = element_blank(),
plot.title = element_text(size = 20, hjust=0.5, vjust= 1, face = "bold"),
plot.subtitle = element_blank(),#element_text(size = 2, hjust=0.5)
strip.text = element_text(size=12, vjust=0.5),
strip.background = element_rect(fill="lightgray"),
# panel.border = element_rect(fill = NA, color = "black"),
panel.spacing.y = unit(0.8, "lines"),
strip.switch.pad.wrap=unit(20, "lines"),
legend.position="right",
legend.text = element_text(size=17),
legend.title = element_text(size=19)
) -> p
print(p)

#ggsave(paste0(Sys.Date()," GCase activity DIV30.pdf"),height=4)
LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KLS0tDQpgYGB7cn0NCmxpYnJhcnkoZ2dwbG90MikNCmxpYnJhcnkocGhlYXRtYXApDQpsaWJyYXJ5KFJDb2xvckJyZXdlcikNCmxpYnJhcnkodGlkeXZlcnNlKQ0KbGlicmFyeShnZ3B1YnIpDQpsaWJyYXJ5KGdnc2lnbmlmKQ0KbGlicmFyeShvcGVueGxzeCkNCmxpYnJhcnkodmlyaWRpcykNCmxpYnJhcnkoamNvbG9ycykNCmxpYnJhcnkoc3RyaW5ncikNCmBgYA0KDQpgYGB7cn0NCnNldHdkKCIvL2F0bGFzLnVuaS5sdXgvdXNlcnMvaXNhYmVsLnJvc2V0eS9HQkEvR0Nhc2UgYWN0aXZpdHkvUGxvdHMiKQ0KZGF0YSAgPC0gcmVhZF9leGNlbCgiLy9hdGxhcy51bmkubHV4L0xDU0JfQ2VsbHVsYXJfQmlvbG9neS8xNi1PdXIgUGFwZXJzL0luIFByZXBhcmF0aW9uL0dCQSBoTU9fSXNhYmVsL0ZpZ3VyZXMvRmlnMS9QYXJ0aWFscy9CLy9RdWFudGlmaWNhdGlvbi8yMDIxMDkxMF9HQ2FzZSBhY3Rpdml0eSByZXN1bHRzLnhsc3giLHNoZWV0PTMpDQoNCmBgYA0KDQoNCmBgYHtyfQ0KI05vcm1hbGl6ZSB0byBtZWFuIG9mIGNvbnRyb2xzIGZvciBvbmUgZmVhdHVyZQ0KZGF0YU4gPC1kYXRhICU+JQ0KICAgICBncm91cF9ieShCYXRjaCwgQ29uZGl0aW9uKSAlPiUNCiAgICAgbXV0YXRlKEdjYXNlX2FjdGl2aXR5PUdjYXNlX2FjdGl2aXR5L21lYW4oZGF0YSRHY2FzZV9hY3Rpdml0eVtkYXRhJENvbmRpdGlvbj09IkNUUkwiXS8xMDAsbmEucm0gPSBUUlVFKSkgDQojd3JpdGUuY3N2KGRhdGFOLCBmaWxlID0gJ0RhdGEgYXMgUGVyY2VudGFnZSBvZiBjb250cm9scy5jc3YnKQ0KDQpkYXRhTjwtYXMuZGF0YS5mcmFtZShkYXRhTikNCg0KYGBgDQoNCg0KUGxvdCBmb3Igb25lIGZlYXR1cmUNCmBgYHtyfQ0KDQpkYXRhTiU+JQ0KICBnZ3Bsb3QoYWVzKHggPSBDb25kaXRpb24sIHk9R2Nhc2VfYWN0aXZpdHkpLG9yZGVyZWQ9VFJVRSkrDQogICAgZ2VvbV9ib3hwbG90KGFlcyhmaWxsPUNvbmRpdGlvbiksc2hvdy5sZWdlbmQgPSBGQUxTRSx3aWR0aD0wLjcpKw0KICAgICAgICAjc2NhbGVfZmlsbF9tYW51YWwodmFsdWVzPWMoIiMyMTcxYjUiLCIjQjIyMjIyIiwiIzAwOEI4QiIpKSsgICNibHVlIGFuZCByZWQNCiAgDQoNCnNjYWxlX2ZpbGxfbWFudWFsKHZhbHVlcz0gYygiI0ZGRkZGRiIsIiM5OTk5OTkiKSxuYW1lID0gIkNvbmRpdGlvbiIsIGd1aWRlID0gIm5vbmUiKSsgI2d1aWRlIGZhbHNlIHdpbGwgcmVtb3ZlIHRoZSBsZWdlbmQgZm9yIHRoZSBjb25kaXRpb24NCiAgI3lsaW0oNCw5KSsNCiAgICAjZ2VvbV9ib3hwbG90KHdpZHRoPTAuMDcsIGZpbGw9IndoaXRlIikgKyANCiAgICBnZW9tX3BvaW50KGFlcyhjb2xvcj1DZWxsTGluZSksc2l6ZT0zLHNob3cubGVnZW5kID0gVCxhbHBoYSA9IDAuNSkrDQogICAgI3NjYWxlX2NvbG9yX21hbnVhbCh2YWx1ZXMgPSByZXYoYnJld2VyLnBhbChuPTYsIG5hbWU9Ik9yUmQiKSkpKw0KICAgIHNjYWxlX2NvbG9yX2pjb2xvcnMoInBhbDciKSsNCiAgICAjc2NhbGVfY29sb3JfdmlyaWRpcyhvcHRpb24gPSAiRCIsIGRpc2NyZXRlPVRSVUUpKw0KICAgICNnZW9tX3BvaW50KHNoYXBlID0gMSxzaXplID0gMyxjb2xvdXIgPSAiYmxhY2siKSsNCiAgICB0aGVtZShsZWdlbmQua2V5PWVsZW1lbnRfYmxhbmsoKSkgKw0KICAgIA0KICBnZW9tX3NpZ25pZihjb21wYXJpc29ucyA9IGxpc3QoYygiQ1RSTCIsICJHQkEtUEQiKSksIHRlc3Q9J3dpbGNveC50ZXN0JywNCiAgICAgICAgICAgICAgdmp1c3Q9MC41LCBzaXplPTAuNSwgdGV4dHNpemU9OSwgbWFwX3NpZ25pZl9sZXZlbD1jKCIqKioiPTAuMDAxLCAiKioiPTAuMDEsICIqIj0wLjA1LCAgIiAiPTIpICkgKw0KICAjZmFjZXRfZ3JpZCh+ZmN0X3JlbGV2ZWwoRGF5LCAiZDMwIiwiZDYwIiksIHNjYWxlcz0iZnJlZSIpICsNCiAgICAgICBsYWJzKHggICAgID0iIiwNCiAgICAgICAgeSAgICAgPSAiUmVsYXRpdmUgR0Nhc2UgYWN0aXZpdHkiLA0KICAgICAgIGZpbGwgID0gIkNvbmRpdGlvbiIsDQogICAgICB0aXRsZSA9ICJHQ2FzZSBhY3Rpdml0eSIpICsNCiAgdGhlbWVfYncoKSArDQogIHRoZW1lKA0KICAgIGF4aXMubGluZSA9IGVsZW1lbnRfbGluZShjb2xvdXIgPSAnYmxhY2snLCBzaXplID0gMSkgLA0KICAgIGF4aXMudGl0bGUueCA9IGVsZW1lbnRfYmxhbmsoKSwNCiAgICBheGlzLnRleHQueCA9IGVsZW1lbnRfdGV4dChzaXplPTIxLCBjb2xvcj0iYmxhY2siKSwNCiAgICBheGlzLnRpdGxlLnkgPSBlbGVtZW50X3RleHQoc2l6ZSA9IDIxKSwNCiAgICBheGlzLnRleHQueSA9IGVsZW1lbnRfdGV4dChzaXplPTE1LCBjb2xvcj0iYmxhY2siKSwNCiAgICBheGlzLnRpY2tzLnkgPSBlbGVtZW50X2xpbmUoKSwNCiAgICBheGlzLnRpY2tzLmxlbmd0aD11bml0KC4yNSwgImNtIiksDQogICAgICNjaGFuZ2UgbGVnZW5kIHRleHQgZm9udCBzaXplKQ0KICAgICNsZWdlbmQua2V5LnNpemUgPSB1bml0KDAuNywgImNtIiksDQogICAgI2xlZ2VuZC5rZXkud2lkdGggPSB1bml0KDAuNiwiY20iKSwNCiAgICBsZWdlbmQua2V5PWVsZW1lbnRfYmxhbmsoKSwNCiAgICBwYW5lbC5ncmlkLm1ham9yID0gZWxlbWVudF9ibGFuaygpLCANCiAgICBwYW5lbC5ncmlkLm1pbm9yID0gZWxlbWVudF9ibGFuaygpLA0KICAgIHBhbmVsLmJvcmRlciA9IGVsZW1lbnRfYmxhbmsoKSwNCiAgICBwbG90LnRpdGxlID0gZWxlbWVudF90ZXh0KHNpemUgPSAyMCwgaGp1c3Q9MC41LCB2anVzdD0gMSwgZmFjZSA9ICJib2xkIiksDQogICAgcGxvdC5zdWJ0aXRsZSA9IGVsZW1lbnRfYmxhbmsoKSwjZWxlbWVudF90ZXh0KHNpemUgPSAyLCBoanVzdD0wLjUpDQogICAgc3RyaXAudGV4dCA9IGVsZW1lbnRfdGV4dChzaXplPTEyLCB2anVzdD0wLjUpLA0KICAgIHN0cmlwLmJhY2tncm91bmQgPSBlbGVtZW50X3JlY3QoZmlsbD0ibGlnaHRncmF5IiksDQogICAjIHBhbmVsLmJvcmRlciA9IGVsZW1lbnRfcmVjdChmaWxsID0gTkEsIGNvbG9yID0gImJsYWNrIiksDQogICAgcGFuZWwuc3BhY2luZy55ID0gdW5pdCgwLjgsICJsaW5lcyIpLA0KICAgIHN0cmlwLnN3aXRjaC5wYWQud3JhcD11bml0KDIwLCAibGluZXMiKSwNCiAgICBsZWdlbmQucG9zaXRpb249InJpZ2h0IiwNCiAgICBsZWdlbmQudGV4dCA9IGVsZW1lbnRfdGV4dChzaXplPTE3KSwNCiAgICBsZWdlbmQudGl0bGUgPSBlbGVtZW50X3RleHQoc2l6ZT0xOSkNCiAgICANCiAgKSAgLT4gcA0KDQogIHByaW50KHApDQoNCiNnZ3NhdmUocGFzdGUwKFN5cy5EYXRlKCksIiBHQ2FzZSBhY3Rpdml0eSBESVYzMC5wZGYiKSxoZWlnaHQ9NCkNCg0KYGBgDQoNCg0K