README.md 24.6 KB
Newer Older
Dimitrios Kyriakis's avatar
Readme    
Dimitrios Kyriakis committed
1
# PINK1 shows LRRK2, Parkin, and SNCA as part of the Parkinson’s network.
Dimitrios Kyriakis's avatar
Dimitrios Kyriakis committed
2

Dimitrios Kyriakis's avatar
Session    
Dimitrios Kyriakis committed
3
4
# Authors
Gabriela Novak, Dimitrios Kyriakis, Kamil Grzyb, Michela Bernini, Alexander Skupin
Dimitrios Kyriakis's avatar
Readme    
Dimitrios Kyriakis committed
5
6
7
8
9

# Abstract

Parkinson’s disease (PD) is the second most prevalent neurodegenerative disorder, yet there is no treatment that can prevent or slow its progression. The mechanisms leading to PD pathology are not well understood, but we can gain insight by studying mutations known to cause PD. We used iPSCs carrying a homozygous mutation (ILE368ASN) within the PINK1 (PARK6) gene to generate midbrain dopaminergic (mDA) neurons, the primary targets of PD. Pairwise comparison between three independent pairs of a PINK1 and a control cell line, using single cell RNA sequencing, identified 151 genes consistently dysregulated at three different timepoints of dopaminergic differentiation. Upon examination, many of these genes formed a network which not only includes genes directly interacting with PINK1-related pathways like Parkin, but also genes that link to several additional PD-related pathways, including LRRK2, DJ-1 and α-synuclein. This suggests that pathology resulting from other PD mutations converges on a common PD network.

Dimitrios Kyriakis's avatar
Dimitrios Kyriakis committed
10
11
<!-- ![Figure1](Figures/Figure1.jpg) -->
<img src="Figures/Figure1.jpg" width=50%>
Dimitrios Kyriakis's avatar
Dimitrios Kyriakis committed
12

Dimitrios Kyriakis's avatar
Figures    
Dimitrios Kyriakis committed
13
**Figure 1:** Experimental design.
Dimitrios Kyriakis's avatar
Figures    
Dimitrios Kyriakis committed
14
15

![Figure2](Figures/Figure2.jpg)
Dimitrios Kyriakis's avatar
Figure1    
Dimitrios Kyriakis committed
16
**Figure 2:** Generation and classification of iPS cell lines.
Dimitrios Kyriakis's avatar
Bold    
Dimitrios Kyriakis committed
17
18
**a)**. Immunocytochemistry. Staining for the iPSC markers Oct3/4 and TRA-180. DAPI was used to stain cell nuclei as a reference. 
**b)**. Results of Scorecard analysis of iPSCs and embryonic bodies (EBs). 
Dimitrios Kyriakis's avatar
Figures    
Dimitrios Kyriakis committed
19
20
21
iPSCs are expected to show high expression of self-renewal genes (Self-renew +) and low mesoderm, ectoderm and endoderm marker expression (Ecto -, Meso -, Endo -).
EBs are cells at an early stage of spontaneous differentiation. Scorecard analysis of EBs determines the iPSC cell line’s potential to differentiate into the three germ layers: ectoderm, mesoderm, and endoderm. EBs are expected to express few or no self-renewal genes (Self-renew -) and to show expression of some mesoderm, ectoderm and endoderm markers: Ecto +/-, Meso +/-, Endo +/-.

Dimitrios Kyriakis's avatar
Readme    
Dimitrios Kyriakis committed
22

Dimitrios Kyriakis's avatar
figure3    
Dimitrios Kyriakis committed
23
![Figure3](Figures/Figure3.jpg)
Dimitrios Kyriakis's avatar
Figures    
Dimitrios Kyriakis committed
24
**Figure 3:** iPSC status, differentiation and classification of mDA neurons.
Dimitrios Kyriakis's avatar
Bold    
Dimitrios Kyriakis committed
25
**a)**. Heatmap of the top 15 differential expressed genes per time-point (adjusted p-value<0.01 and fold change >0.1) across the different time points of the control data that examined (IPSCs,Day06, Day15 and Day21).  **b)**. Expression of stemness markers: SOX2, MYC (c-Myc), POU5F1 (Oct4), and NANOG, and mDA-specific differentiation pathways in differentiating neurons (SC and qPCR): Otx2, EN1, Lmx1b, Lmx1a, and Foxa2. SOX2 directs the differentiation of iPSCs into neural progenitors and for maintains the properties of neural progenitor stem cells.
Dimitrios Kyriakis's avatar
Figures    
Dimitrios Kyriakis committed
26
27
28


![Figure4](Figures/Figure4.jpg)
Dimitrios Kyriakis's avatar
Bold    
Dimitrios Kyriakis committed
29
**Figure 4:** iPSC status, differentiation and classification of mDA neurons. **a)**. Expression of mDA-specific differentiation pathways in differentiating neurons (SC and qPCR): Otx2, EN1, Lmx1b, Lmx1a, and Foxa2 (also see Table 2). **b)**. Staining for DA marker TH, neuronal marker MAP2.
Dimitrios Kyriakis's avatar
Figures    
Dimitrios Kyriakis committed
30
31
32


![Figure5](Figures/Figure5.jpg)
Dimitrios Kyriakis's avatar
Bold    
Dimitrios Kyriakis committed
33
**Figure 5:** **a)** Heatmap of the common differential expressed genes (adjusted p-value<0.01 and fold change >0.1) across the different time points that examined (Day06, Day15 and Day21). Each column is a single cell, and each row is a single gene. The bar on the top shows the experimental origin of cells. **b)** Venn diagrams of the differential expressed genes across time points. **c)** Volcano plot for the pairwise differential expression analysis. For illustration purposes we used 0.6 fold change as threshold to annotate the genes with greater fold change and significant adjusted p-value (adjusted p-value<0.01).
Dimitrios Kyriakis's avatar
Figure3    
Dimitrios Kyriakis committed
34
35
36
37
38


# scRNAseq Analysis

## Libraries 
Dimitrios Kyriakis's avatar
Dimitrios Kyriakis committed
39
40
<details><summary>Code</summary> 
<p>
Dimitrios Kyriakis's avatar
coll    
Dimitrios Kyriakis committed
41
42

```r
Dimitrios Kyriakis's avatar
Dimitrios Kyriakis committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
library(reticulate)
use_python("C:/Users/dimitrios.kyriakis/AppData/Local/Continuum/anaconda3/envs/iscwrapper/python.exe", required = TRUE)
options(future.globals.maxSize= 2122317824)
library(sctransform)
library(Seurat)
ibrary( RColorBrewer)
library(tictoc)
library(crayon)
library(stringr)
library(Routliers)
library(jcolors)
library(cluster)
library(garnett)
library(NMF)
library(ggplot2)
library(ggpubr)
library(cowplot)
set.seed(123)
```
</p>
Dimitrios Kyriakis's avatar
Dimitrios Kyriakis committed
63
64
</details>

Dimitrios Kyriakis's avatar
Dimitrios Kyriakis committed
65

Dimitrios Kyriakis's avatar
Figure3    
Dimitrios Kyriakis committed
66
## Setting Up
Dimitrios Kyriakis's avatar
Dimitrios Kyriakis committed
67
68
<details><summary>Code</summary> 
<p>
Dimitrios Kyriakis's avatar
coll    
Dimitrios Kyriakis committed
69
70

```r
Dimitrios Kyriakis's avatar
Dimitrios Kyriakis committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
tool="seurat"
project ="Michi_Data"
dataset <- project
Data_select <- ICSWrapper::data_selection(project)
WORKDIR <- Data_select$WORKDIR
list_of_files <- Data_select$list_of_files
condition_names <- Data_select$condition_names
condition_names <- condition_names[c(1,2,3,4,5,6,8,28,29)]
list_of_files <- list_of_files[c(1,2,3,4,5,6,8,28,29)]
organism<- Data_select$organism
file<- Data_select$file
data_10x<- Data_select$data_10x
setwd(Data_select$WORKDIR)
color_cond <- c( "magenta4", "#007A87",brewer.pal(6,"Dark2")[-1],"#FF5A5F","black")
color_clust <- c(brewer.pal(12,"Paired")[-11],"black","gray","magenta4","seagreen4",brewer.pal(9,"Set1")[-6],brewer.pal(8,"Dark2"))
color_cells <- c(brewer.pal(9,"Set1")[-6],"goldenrod4","darkblue","seagreen4")
color_list <- list(condition=color_cond,Cluster=color_clust,Cell_Type=color_cells,State=color_clust)
imputation = FALSE
remove_mt=FALSE
remove_ribsomal=FALSE
n_cores=4
elbow = TRUE
SCT=TRUE
criteria_pass=3
min.cells <- 10
min.features <- 200
```
</p>
Dimitrios Kyriakis's avatar
readme    
Dimitrios Kyriakis committed
99
</details>
Dimitrios Kyriakis's avatar
Readme    
Dimitrios Kyriakis committed
100

Dimitrios Kyriakis's avatar
Dimitrios Kyriakis committed
101

Dimitrios Kyriakis's avatar
Readme    
Dimitrios Kyriakis committed
102
103
104
105
106
## Preprocessing

The identification of the low quality cells was done separately in each data set. In order to select only the highest quality data, we sorted the cells by the cumulative gene expression. A subset of cells with the highest cumulative expression was considered for the analysis [1]. 
Additional to this filtering, we defined cells as low-quality, based on three criteria for each cell. The number of the genes that expressed is more than 200 and 2 median-absolute- deviations (MADs) above the median, the total number of counts is 2 MADs above or below the median and the percentage of counts to mitochondrial genes is 1.5 median-absolute- deviations (MADs) above the median. Cells failing at least one criteria were considered as low quality cells and filtered out from further analysis. Similar to the cell filtering, we filtered out the low quality genes that been expressed in less than 10 cells in the data. 

Dimitrios Kyriakis's avatar
Dimitrios Kyriakis committed
107

Dimitrios Kyriakis's avatar
Dimitrios Kyriakis committed
108
109
<details><summary>Code</summary> 
<p>
Dimitrios Kyriakis's avatar
coll    
Dimitrios Kyriakis committed
110
111

```r
Dimitrios Kyriakis's avatar
Dimitrios Kyriakis committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
NewDir <- paste0(Sys.Date(),"_",tool,"_elbow_",elbow,"_Mito-",remove_mt,"_Ribo-",remove_ribsomal,"_SCT-",SCT,"_criteria_pass-",criteria_pass)
dir.create(NewDir)
setwd(NewDir)
dir.create("QC")
setwd("QC")
Return_fun <- ICSWrapper::create_cds2(list_of_files=list_of_files,
                                    condition_names=condition_names,
                                    min.features =min.features,min.cells=min.cells,
                                    remove_mt=remove_mt,data_10x=data_10x,
                                    elbow = elbow,tool=tool,n_cores=1,SCT=SCT,
                                    criteria_pass = criteria_pass,vars.to.regress=c("nCount_RNA"))
Combined  <- Return_fun$Combined
Data_List <- Return_fun$Data_List
setwd("../")
```
Dimitrios Kyriakis's avatar
coll    
Dimitrios Kyriakis committed
127

Dimitrios Kyriakis's avatar
Dimitrios Kyriakis committed
128
</p>
Dimitrios Kyriakis's avatar
readme    
Dimitrios Kyriakis committed
129
</details>
Dimitrios Kyriakis's avatar
Readme    
Dimitrios Kyriakis committed
130

Dimitrios Kyriakis's avatar
Dimitrios Kyriakis committed
131

Dimitrios Kyriakis's avatar
supfig    
Dimitrios Kyriakis committed
132
133
134
![SupFig1](Figures/SupFig1.jpg)
**Supl.Figure1:** Quality control Plots of control sample Day 06. a) Cumulative Total number of counts. The red vertical lines represent the down and upper bound of the expected elbow. The blue dot represent the transitional point calculated using ecp r package. b)  Histograms of the three criteria that used for low quality cell filtering. c,d) Violin plots of the three criteria. c) Cell score before filtering. Red dots are the cells that filtered after the quality control. d) The overview of the three criteria after filtering step.  

Dimitrios Kyriakis's avatar
Readme    
Dimitrios Kyriakis committed
135
136
137
138
139


## Data Intergration

The integration of the filtered matrices of the different datasets was performed using scTransform [2] on a Seurat object [3] based on the treatment. The final gene expression matrix which used for the downstream analysis, consist of 4495 cells and 39194 genes. Principal component analysis (PCA) was computed using the 5000 most variable genes on the integrated data. 
Dimitrios Kyriakis's avatar
Dimitrios Kyriakis committed
140
141


Dimitrios Kyriakis's avatar
Dimitrios Kyriakis committed
142
143
<details><summary>Code</summary> 
<p>
Dimitrios Kyriakis's avatar
coll    
Dimitrios Kyriakis committed
144
145

```r
Dimitrios Kyriakis's avatar
Dimitrios Kyriakis committed
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
dir.create("Aligned_Cond_RegPhase")
setwd("Aligned_Cond_RegPhase")
DefaultAssay(Combined) <- "RNA"
Combined$condition <- factor(as.factor(Combined$condition), levels = c("Control_IPSCs", "Control_D06"  ,"Control_D10",   "Control_D15",   "Control_D21",
"PINK1_IPSCs","PINK1_D06",     "PINK1_D15",     "PINK1_D21"))
Combined$Treatment <-as.vector(Combined$condition)
Combined$Treatment[grep("Control",Combined$Treatment)] <- "Control"
Combined$Treatment[grep("PINK",Combined$Treatment)] <- "PINK"
pink.list <-SplitObject(Combined,split.by = "Treatment")
for (i in 1:length(pink.list)) {
    pink.list[[i]] <- SCTransform(pink.list[[i]], verbose = FALSE,vars.to.regress=c("G2M.Score","S.Score"))
}
int.features <- SelectIntegrationFeatures(object.list = pink.list, nfeatures = 3000)
pink.list <- PrepSCTIntegration(object.list = pink.list, anchor.features = int.features,
                                    verbose = FALSE)
int.anchors <- FindIntegrationAnchors(object.list = pink.list, normalization.method = "SCT",
                                            anchor.features = int.features, verbose = FALSE)
Seurat.combined <- IntegrateData(anchorset = int.anchors, normalization.method = "SCT",
                                    verbose = FALSE)
DefaultAssay(object = Seurat.combined) <- "integrated"
Combined <- Seurat.combined
setwd("../")
```
Dimitrios Kyriakis's avatar
coll    
Dimitrios Kyriakis committed
169

Dimitrios Kyriakis's avatar
Dimitrios Kyriakis committed
170
</p>
Dimitrios Kyriakis's avatar
readme    
Dimitrios Kyriakis committed
171
</details>
Dimitrios Kyriakis's avatar
Readme    
Dimitrios Kyriakis committed
172
173
174
175
176
177



## Clustering

The clustering of data was performed using Louvain clustering. The resolution of the clustering was selected based on the best silhouette score of the different resolutions [4].
Dimitrios Kyriakis's avatar
Dimitrios Kyriakis committed
178
179


Dimitrios Kyriakis's avatar
Dimitrios Kyriakis committed
180
181
182

<details><summary>Code</summary> 
<p>
Dimitrios Kyriakis's avatar
coll    
Dimitrios Kyriakis committed
183
184

```r
Dimitrios Kyriakis's avatar
Dimitrios Kyriakis committed
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
dir.create("Clusters")
setwd("Clusters")
Combined <- ICSWrapper::reduce_dim(Combined,project=project,assay = "SCT")$Combined#,resolution=c(0.1))$Combined
# ====== Reorder Conditions
Combined$condition <- factor(as.factor(Combined$condition), levels = c("Control_IPSCs", "Control_D06"  ,"Control_D10",   "Control_D15",   "Control_D21",
"PINK1_IPSCs","PINK1_D06",     "PINK1_D15",     "PINK1_D21"))
# ====== PLot
pdf(paste(Sys.Date(),project,"tsne","projection.pdf",sep="_"))
ICSWrapper::plot_cells(Combined,target="condition",leg_pos="right",save=FALSE,ncol=1,color_list = color_list)
ICSWrapper::plot_cells(Combined,target="Cluster",leg_pos="right",save=FALSE,ncol=1,color_list = color_list)
dev.off()
# Quality Plots
ICSWrapper::plot_nFeatures(Combined,title="",save=TRUE,tiff=FALSE,reduce="t-SNE",p3D=FALSE)
ICSWrapper::plot_tot_mRNA(Combined,title="",save=TRUE,tiff=FALSE,reduce="t-SNE",p3D=FALSE)
if(tolower(tool)=="seurat" & elbow){
    p3 <- DimPlot(object = Combined, reduction = "umap", group.by = "condition",cols = color_cond)
    p4 <- DimPlot(object = Combined, reduction = "umap", label = TRUE,cols = color_clust)
    pdf(paste(Sys.Date(),project,"umap","Seurat.pdf",sep="_"))
    print(p3)
    print(p4)
Dimitrios Kyriakis's avatar
readme    
Dimitrios Kyriakis committed
205
    dev.off()
Dimitrios Kyriakis's avatar
Dimitrios Kyriakis committed
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
}
setwd("../")
saveRDS(Combined,paste0("Clustered_",NewDir,".rds"))
# Sum up Plots
pdf(paste(Sys.Date(),project,"_projection_Aligned_Treatment.pdf",sep="_"))
ICSWrapper::plot_cells(Combined,target="condition",leg_pos="right",save=FALSE,ncol=1,reduction="umap",color_list = color_list)
ICSWrapper::plot_cells(Combined,target="Cluster",leg_pos="right",save=FALSE,ncol=1,reduction="umap",color_list = color_list)
ICSWrapper::plot_cells(Combined,target="Phase",leg_pos="right",save=FALSE,ncol=1,reduction="umap",color_list = color_list)
ICSWrapper::plot_cells(Combined,target="condition",leg_pos="right",save=FALSE,ncol=1,reduction="tsne",color_list = color_list)
ICSWrapper::plot_cells(Combined,target="Cluster",leg_pos="right",save=FALSE,ncol=1,reduction="tsne",color_list = color_list)
ICSWrapper::plot_cells(Combined,target="Phase",leg_pos="right",save=FALSE,ncol=1,reduction="tsne",color_list = color_list)
dev.off()
# ---------------------------------------------------------------------------------------
res<-ICSWrapper::scatter_gene(Combined,features = c("nCount_RNA","nFeature_RNA","percent.mito","percent.rb"),size=0.9)
pdf("Combined_QC.pdf")
print(res)
# Free Space
dev.off()
Return_fun <- NULL
Seurat.combined <- NULL
pink.list <- NULL
#save.image("IPSCs_PINK.RData")
```
</p>
Dimitrios Kyriakis's avatar
readme    
Dimitrios Kyriakis committed
230
</details>
Dimitrios Kyriakis's avatar
Readme    
Dimitrios Kyriakis committed
231
232
233



Dimitrios Kyriakis's avatar
readme    
Dimitrios Kyriakis committed
234
## iPSCs Differentiation
Dimitrios Kyriakis's avatar
Readme    
Dimitrios Kyriakis committed
235

Dimitrios Kyriakis's avatar
readme    
Dimitrios Kyriakis committed
236
A short list of manually curated markers was used in order to validate the different stages of the differentiation process. 
Dimitrios Kyriakis's avatar
Readme    
Dimitrios Kyriakis committed
237

Dimitrios Kyriakis's avatar
Dimitrios Kyriakis committed
238
239
<details><summary>Code</summary> 
<p>
Dimitrios Kyriakis's avatar
coll    
Dimitrios Kyriakis committed
240
241

```r
Dimitrios Kyriakis's avatar
Dimitrios Kyriakis committed
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# ================================== Developmental Stages =========================================
dir.create("Developmental_Markers")
setwd("Developmental_Markers")
DefaultAssay(Combined) <- "RNA"
file <- paste0(WORKDIR,"/Gene_Lists/Paper_IPCS_genes.txt")
genes_state <-read.table(file)
pdf("Cell_Assignment_Plots.pdf")
res <- cell_type_assignment(object=Combined,tab_name = "Identity",group_by="Cluster",file,assign=TRUE,color_list = color_clust)
Combined$Identity <- as.vector(Combined$Cluster)
for (level in levels(Combined$Cluster)){
    Combined$Identity[as.vector(Combined$Cluster) == as.numeric(level)] <- res$radar$Identity[as.numeric(level)]
}
Combined$Identity <- as.factor(Combined$Identity)
DimPlot(Combined,group.by = c("Identity","Cluster"))
dev.off()
for(category in levels(as.factor(genes_state$V1))){
    category_genes <- toupper(as.vector(genes_state[genes_state$V1==category,2]))
Dimitrios Kyriakis's avatar
readme    
Dimitrios Kyriakis committed
259
    category_genes_l <- category_genes[category_genes%in%rownames(Combined)]
Dimitrios Kyriakis's avatar
Dimitrios Kyriakis committed
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
    Combined <- AddModuleScore(Combined,features = list(category_genes_l),name = category)
    pdf(paste0(category,"_umap_projection_condition_regPhase.pdf"),width = 8,height = 8)
    res <- ICSWrapper::scatter_gene(Combined,features = category_genes_l,ncol = 2,nrow = 2,size=1.1)
    plot(res)
    dev.off()
}
features <- c("iPSC_identity1","Mda_identity_stage11", "Mda_identity_stage21","Mda_identity_stage31","Mda_identity_stage41", "Non.Mda1")    
pdf("Development_umap_projection_condition_regPhase.pdf",width = 12,height = 8)
res <- ICSWrapper::scatter_gene(Combined,features = features,ncol = 3,nrow = 2,size=1.1)
print(ggarrange(plotlist=res,ncol = 3,nrow = 2))
dev.off()
Combined <- ScaleData(Combined,rownames(Combined))
category_genes <- toupper(as.vector(genes_state[,2]))
category_genes_l <- category_genes[category_genes%in%rownames(Combined)]
ICSWrapper::annotated_heat(Combined,row_annotation = c(1),gene_list = category_genes_l,ordering = "condition",title="Development_Markers",color_list = color_list)
ics_scanpy(Combined,features = category_genes_l,group.by = "condition",Rowv = NA,scale="c1")
setwd("../")
# --------------------------------------------------------------------------------------------------
```
</p>
Dimitrios Kyriakis's avatar
readme    
Dimitrios Kyriakis committed
280
281
</details>
  
Dimitrios Kyriakis's avatar
Figure3    
Dimitrios Kyriakis committed
282
## Pairwise Differential Expression
Dimitrios Kyriakis's avatar
Readme    
Dimitrios Kyriakis committed
283
284


Dimitrios Kyriakis's avatar
Dimitrios Kyriakis committed
285
286
<details><summary>Code</summary> 
<p>
Dimitrios Kyriakis's avatar
coll    
Dimitrios Kyriakis committed
287
288

```r
Dimitrios Kyriakis's avatar
Dimitrios Kyriakis committed
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
# =============================== PAIRWISE DF ===============================================
dir.create("DF_Pairwise_PAPER")
setwd("DF_Pairwise_PAPER")
library(EnhancedVolcano)
Combined$condition <- as.factor(Combined$condition)
Idents(Combined) <- as.factor(Combined$condition)
cl_combinations <- combn(levels(Combined$condition),2)
cl_combinations <- cl_combinations[,c(5,13,25,30)]
DefaultAssay(Combined) <- "RNA"
Combined <- NormalizeData(Combined)
Combined <- ScaleData(Combined,rownames(Combined@assays$RNA@counts))
library(parallel)
pairwise_df <- function (comb,object,cl_combinations){
    DefaultAssay(object) <- "RNA"
    title <- paste(cl_combinations[,comb],collapse = "_")
    dir.create(title)
    setwd(title)
    target <- "condition"
    idents <- as.vector(cl_combinations[,comb])
    ident.1 <- idents[1]
    print(ident.1)
    ident.2 <- idents[2]
    pbmc.markers <- FindMarkers(object = object,
                                    ident.1 = ident.1,
                                    ident.2 =ident.2,
                                assay ="RNA",min.pct =0.1,
                                logfc.threshold=0.0,
                                only.pos = FALSE,
                                test.use = "MAST",latent.vars = c("nCount_RNA"))
    pbmc.markers$gene <- rownames(pbmc.markers)
    qvalue <- p.adjust(pbmc.markers$p_val, method = "BH",n=dim(object@assays$RNA@counts)[1])
    pbmc.markers$qvalue <- qvalue
    top <- pbmc.markers[pbmc.markers$p_val_adj<0.05,]
    to_fc <- top[order(abs(top$avg_logFC),decreasing = TRUE),]
    to_fc_gene <- rownames(to_fc)[1:50]
    #top10 <- top %>% top_n(n = 50, wt = abs(avg_logFC))
    #top10_genes<- rownames(top10)
    temp <- object[,object$condition%in%c(ident.1,ident.2)]
    temp$condition <- as.factor(as.vector(temp$condition))
    # debugonce(annotated_heat)
    pdf("Volcano.pdf")
    plot(EnhancedVolcano(pbmc.markers,
                    lab = pbmc.markers$gene,
                    x = 'avg_logFC',
                    y = 'p_val_adj',subtitle = paste(ident.1,"vs",ident.2,"(FCcutoff=0.6)"),
                    xlim = c(-2, 2),FCcutoff = 0.6))
    dev.off()
    ICSWrapper::annotated_heat(object=temp,
                row_annotation=c(1),
                gene_list=to_fc_gene,
                Rowv=TRUE,
                gene_list_name="DF_genes",
                title=title,
                ordering="condition",One_annot = TRUE)
    DefaultAssay(temp) <- "integrated"
    write.table(pbmc.markers, file = paste0(Sys.Date(),"_TO_EXP_each_",target,"_",title,".tsv"),row.names=FALSE, na="", sep="\t")
    setwd("../")
}
# Apply DF
mclapply(c(1:dim(cl_combinations)[2]),FUN=pairwise_df,object=Combined,cl_combinations=cl_combinations,mc.cores=1)
Dimitrios Kyriakis's avatar
coll    
Dimitrios Kyriakis committed
349
```
Dimitrios Kyriakis's avatar
Dimitrios Kyriakis committed
350
</p>
Dimitrios Kyriakis's avatar
readme    
Dimitrios Kyriakis committed
351
352
</details>

Dimitrios Kyriakis's avatar
Readme    
Dimitrios Kyriakis committed
353
354


Dimitrios Kyriakis's avatar
Figure3    
Dimitrios Kyriakis committed
355
## Intersection of DF genes
Dimitrios Kyriakis's avatar
Readme    
Dimitrios Kyriakis committed
356

Dimitrios Kyriakis's avatar
Dimitrios Kyriakis committed
357
358
<details><summary>Code</summary> 
<p>
Dimitrios Kyriakis's avatar
coll    
Dimitrios Kyriakis committed
359
360

```r
Dimitrios Kyriakis's avatar
Dimitrios Kyriakis committed
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
dirs_pairs <- list.dirs("C:/Users/dimitrios.kyriakis/Desktop/PhD/Projects/Michi_Data/DF_Pairwise_Networks/DF_Pairwise_PAPER",full.names = TRUE )[-1]
dirs_pairs <- grep('IPSC|D06.*D06|D15.*D15|D21.*D21',dirs_pairs,value = TRUE)
dirs_pairs <- dirs_pairs[-4]
df_return_nt_cntrl <- list()
df_return_nt_pink <- list()
df_return_nt_all <- list()
# ===== Iterate through different DF files
for (iter in 1:length(dirs_pairs)){
    dirs_iter <- dirs_pairs[iter]
    file <- paste0(dirs_iter ,"/", dir(dirs_iter, "*.tsv"))
    l1 <- read.table(file,header=TRUE)
    l1$cluster <- l1$avg_logFC
    l1$cluster[ l1$avg_logFC<0] <- "PINK"
    l1$cluster[ l1$avg_logFC>0] <- "Control"
    ctrl_l1 <- l1[grep("Control",l1$cluster),]
    pink_l1 <- l1[grep("PINK",l1$cluster),]
    all_l1 <-  l1
    df_return_nt_cntrl[[iter]] <- as.vector(ctrl_l1[ctrl_l1$p_val_adj<0.01 & abs(ctrl_l1$avg_logFC) >0.4,"gene"])
    df_return_nt_pink[[iter]] <- as.vector(pink_l1[pink_l1$p_val_adj<0.01 & abs(pink_l1$avg_logFC) >0.4,"gene"])
    print(length(df_return_nt_cntrl[[iter]]))
    print(length(df_return_nt_pink[[iter]]))
    df_return_nt_all[[iter]] <- c(df_return_nt_cntrl[[iter]] ,df_return_nt_pink[[iter]])
}
# # ============= Intersect Common Genes
cntrl_intesect <- Reduce(intersect, df_return_nt_cntrl)
print(cntrl_intesect)
pink_intesect <- Reduce(intersect, df_return_nt_pink)
print(pink_intesect)
length(cntrl_intesect)
length(pink_intesect)
# ==== PLOT VENN
pdf("Control_venn_diagramm.pdf")
day06 <- c(df_return_nt_cntrl[[1]])
day15 <- c(df_return_nt_cntrl[[2]])
day21 <- c(df_return_nt_cntrl[[3]])
# Generate plot
v <- venn.diagram(list(Day06=day06, Day15=day15,Day21=day21),
                fill = myCol,
                alpha = c(0.5, 0.5, 0.5), cat.cex = 1.5, cex=1.5,
                filename=NULL)
# have a look at the default plot
grid.newpage()
grid.draw(v)
# have a look at the names in the plot object v
lapply(v,  names)
# We are interested in the labels
lapply(v, function(i) i$label)
v[[11]]$label <- paste(intersect(intersect(day06, day15),day21), collapse="\n")  
# plot  
grid.newpage()
grid.draw(v)
dev.off()
# ======= PINK VENN
pdf("PINK_venn_diagramm.pdf")
day06 <- c(df_return_nt_pink[[1]])
day15 <- c(df_return_nt_pink[[2]])
day21 <- c(df_return_nt_pink[[3]])
# Generate plot
v <- venn.diagram(list(Day06=day06, Day15=day15,Day21=day21),
                fill = myCol,
                alpha = c(0.5, 0.5, 0.5), cat.cex = 1.5, cex=1.5,
                filename=NULL)
# have a look at the default plot
grid.newpage()
grid.draw(v)
# have a look at the names in the plot object v
lapply(v,  names)
# We are interested in the labels
lapply(v, function(i) i$label)
v[[11]]$label <- paste(intersect(intersect(day06, day15),day21), collapse="\n")  
# plot  
grid.newpage()
grid.draw(v)
dev.off()
setwd("../")
# ----------------------------------------------------------------------------------------------
```
</p>
Dimitrios Kyriakis's avatar
readme    
Dimitrios Kyriakis committed
439
</details>
Dimitrios Kyriakis's avatar
Session    
Dimitrios Kyriakis committed
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514




## Session Info

<details><summary>Code</summary> 
<p>

```r


R version 3.6.2 (2019-12-12)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 18363)

Matrix products: default

locale:
[1] LC_COLLATE=English_United States.1252  LC_CTYPE=English_United States.1252   
[3] LC_MONETARY=English_United States.1252 LC_NUMERIC=C                          
[5] LC_TIME=English_United States.1252    

attached base packages:
 [1] grid      stats4    parallel  stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] gridBase_0.4-7              VennDiagram_1.6.20          futile.logger_1.4.3        
 [4] gridExtra_2.3               viridis_0.5.1               viridisLite_0.3.0          
 [7] forcats_0.5.0               dplyr_0.8.5                 purrr_0.3.3                
[10] readr_1.3.1                 tidyr_1.0.2                 tibble_3.0.0               
[13] tidyverse_1.3.0             cowplot_1.0.0               ggpubr_0.2.5               
[16] magrittr_1.5                ggplot2_3.3.0               NMF_0.22.0                 
[19] rngtools_1.5                pkgmaker_0.31.1             registry_0.5-1             
[22] garnett_0.2.9               monocle3_0.2.1.5            SingleCellExperiment_1.8.0 
[25] SummarizedExperiment_1.16.1 DelayedArray_0.12.3         BiocParallel_1.20.1        
[28] matrixStats_0.56.0          GenomicRanges_1.38.0        GenomeInfoDb_1.22.1        
[31] IRanges_2.20.2              S4Vectors_0.24.4            Biobase_2.46.0             
[34] BiocGenerics_0.32.0         cluster_2.1.0               jcolors_0.0.4              
[37] Routliers_0.0.0.3           stringr_1.4.0               crayon_1.3.4               
[40] tictoc_1.0                  RColorBrewer_1.1-2          Seurat_3.1.5               
[43] sctransform_0.2.1           reticulate_1.15            

loaded via a namespace (and not attached):
  [1] readxl_1.3.1           backports_1.1.6        plyr_1.8.6             igraph_1.2.5          
  [5] lazyeval_0.2.2         splines_3.6.2          listenv_0.8.0          digest_0.6.23         
  [9] foreach_1.5.0          htmltools_0.4.0        gdata_2.18.0           fansi_0.4.1           
 [13] doParallel_1.0.15      ROCR_1.0-7             globals_0.12.5         modelr_0.1.6          
 [17] prettyunits_1.1.1      colorspace_1.4-1       rvest_0.3.5            ggrepel_0.8.2         
 [21] haven_2.2.0            RCurl_1.98-1.1         jsonlite_1.6           graph_1.64.0          
 [25] survival_3.1-11        zoo_1.8-7              iterators_1.0.12       ape_5.3               
 [29] glue_1.4.0             gtable_0.3.0           zlibbioc_1.32.0        XVector_0.26.0        
 [33] leiden_0.3.3           future.apply_1.4.0     abind_1.4-5            scales_1.1.0          
 [37] futile.options_1.0.1   DBI_1.1.0              bibtex_0.4.2.2         Rcpp_1.0.4.6          
 [41] xtable_1.8-4           progress_1.2.2         rsvd_1.0.3             tsne_0.1-3            
 [45] htmlwidgets_1.5.1      httr_1.4.1             gplots_3.0.3           ellipsis_0.3.0        
 [49] ica_1.0-2              farver_2.0.3           pkgconfig_2.0.3        uwot_0.1.8            
 [53] dbplyr_1.4.2           labeling_0.3           tidyselect_1.0.0       rlang_0.4.5           
 [57] reshape2_1.4.3         cellranger_1.1.0       munsell_0.5.0          tools_3.6.2           
 [61] cli_2.0.2              generics_0.0.2         broom_0.5.5            ggridges_0.5.2        
 [65] npsurv_0.4-0           fs_1.4.1               fitdistrplus_1.0-14    caTools_1.18.0        
 [69] RANN_2.6.1             pbapply_1.4-2          future_1.16.0          nlme_3.1-145          
 [73] formatR_1.7            xml2_1.3.1             compiler_3.6.2         rstudioapi_0.11       
 [77] plotly_4.9.2.1         png_0.1-7              lsei_1.2-0             ggsignif_0.6.0        
 [81] reprex_0.3.0           stringi_1.4.6          lattice_0.20-41        Matrix_1.2-18         
 [85] vctrs_0.2.4            pillar_1.4.3           lifecycle_0.2.0        lmtest_0.9-37         
 [89] RcppAnnoy_0.0.16       data.table_1.12.8      bitops_1.0-6           irlba_2.3.3           
 [93] patchwork_1.0.0.9000   R6_2.4.1               KernSmooth_2.23-16     codetools_0.2-16      
 [97] lambda.r_1.2.4         MASS_7.3-51.5          gtools_3.8.2           assertthat_0.2.1      
[101] MAST_1.12.0            withr_2.1.2            GenomeInfoDbData_1.2.2 hms_0.5.3             
[105] ICSWrapper_0.2.2       Rtsne_0.15             lubridate_1.7.8    

```
</p>
</details>