Gitlab migration complete. If you have any issue please read the FAQ.

Commit d0ab6a77 authored by Armin Rauschenberger's avatar Armin Rauschenberger
Browse files

vignette

parent a29588fb
This package was submitted to CRAN on 2020-10-02.
Once it is accepted, delete this file and tag the release (commit a29588f).
Package: joinet
Version: 0.0.5
Title: Multivariate Elastic Net Regression
Description: Implements high-dimensional multivariate regression by stacked generalisation (Wolpert 1992 <doi:10.1016/S0893-6080(05)80023-1>). For positively correlated outcomes, a single multivariate regression is typically more predictive than multiple univariate regressions. Includes functions for model fitting, extracting coefficients, outcome prediction, and performance measurement.
Description: Implements high-dimensional multivariate regression by stacked generalisation (Wolpert 1992 <doi:10.1016/S0893-6080(05)80023-1>). For positively correlated outcomes, a single multivariate regression is typically more predictive than multiple univariate regressions. Includes functions for model fitting, extracting coefficients, outcome prediction, and performance measurement. If required, install MRCE from GitHub (<https://github.com/cran/MRCE>).
Depends: R (>= 3.0.0)
Imports: glmnet, palasso, cornet
Suggests: knitr, testthat, MASS
Suggests: knitr, rmarkdown, testthat, MASS
Enhances: mice, earth, spls, MRCE, remMap, MultivariateRandomForest, SiER, mcen, GPM, RMTL, MTPS
Authors@R: person("Armin","Rauschenberger",email="armin.rauschenberger@uni.lu",role=c("aut","cre"))
VignetteBuilder: knitr
......
# Notes
Thanks for updating the package.
\ No newline at end of file
......@@ -12,7 +12,7 @@
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous">
<!-- clipboard.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script><!-- headroom.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script><!-- pkgdown --><link href="pkgdown.css" rel="stylesheet">
<script src="pkgdown.js"></script><meta property="og:title" content="Multivariate Elastic Net Regression">
<meta property="og:description" content="Implements high-dimensional multivariate regression by stacked generalisation (Wolpert 1992 &lt;doi:10.1016/S0893-6080(05)80023-1&gt;). For positively correlated outcomes, a single multivariate regression is typically more predictive than multiple univariate regressions. Includes functions for model fitting, extracting coefficients, outcome prediction, and performance measurement.">
<meta property="og:description" content="Implements high-dimensional multivariate regression by stacked generalisation (Wolpert 1992 &lt;doi:10.1016/S0893-6080(05)80023-1&gt;). For positively correlated outcomes, a single multivariate regression is typically more predictive than multiple univariate regressions. Includes functions for model fitting, extracting coefficients, outcome prediction, and performance measurement. If required, install MRCE from GitHub (&lt;https://github.com/cran/MRCE&gt;).">
<!-- mathjax --><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script><!--[if lt IE 9]>
<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script>
<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
......
......@@ -4,5 +4,5 @@ pkgdown_sha: ~
articles:
article: article.html
joinet: joinet.html
last_built: 2020-10-02T15:31Z
last_built: 2020-10-02T16:16Z
......@@ -219,7 +219,7 @@ logical (<code>mice=TRUE</code> requires package <code>mice</code>)</p></td>
</tr>
<tr>
<th>cvpred</th>
<td><p>return cross-validated predicitions: logical</p></td>
<td><p>return cross-validated predictions: logical</p></td>
</tr>
<tr>
<th>times</th>
......
......@@ -69,7 +69,7 @@ character vector with entries "mnorm", "spls", "mrce",
\item{mice}{missing data imputation\strong{:}
logical (\code{mice=TRUE} requires package \code{mice})}
\item{cvpred}{return cross-validated predicitions: logical}
\item{cvpred}{return cross-validated predictions: logical}
\item{times}{measure computation time\strong{:}
logical}
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment