functions.R 30.5 KB
Newer Older
Rauschenberger's avatar
Rauschenberger committed
1

Rauschenberger's avatar
Rauschenberger committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
#' @export
#' @title
#' Get SNP data (Geuvadis)
#' 
#' @description
#' This function transforms SNP data (local machine).
#' 
#' @param chr
#' chromosome: integer \eqn{1-22}
#' 
#' @param path
#' local directory for VCF (variant call format) and SDRF (sample and data relationship format) files
#' 
#' @examples
#' path <- "C:/Users/a.rauschenbe/Desktop/spliceQTL/data"
#' 
get.snps.geuvadis <- function(chr,path=getwd()){
    
    # download SNP data
    file <- paste0("GEUVADIS.chr",chr,".PH1PH2_465.IMPFRQFILT_BIALLELIC_PH.annotv2.genotypes.vcf.gz")
    url <- paste0("http://www.ebi.ac.uk/arrayexpress/files/E-GEUV-1/genotypes/",file)
    destfile <- file.path(path,file)
    if(!file.exists(destfile)){
        utils::download.file(url=url,destfile=destfile,method="auto")
    }
    
    # transform with PLINK
    setwd(path)
    system(paste0("plink --vcf GEUVADIS.chr",chr,".PH1PH2_465.IMPFRQFILT_BIALLELIC_PH.annotv2.genotypes.vcf.gz",
                  " --maf 0.05 --geno 0 --make-bed --out snps",chr),invisible=FALSE)
    
    # read into R
    bed <- file.path(path,paste("snps",chr,".bed",sep=""))
    bim <- file.path(path,paste("snps",chr,".bim",sep=""))
    fam <- file.path(path,paste("snps",chr,".fam",sep=""))
    X <- snpStats::read.plink(bed=bed,bim=bim,fam=fam)
    X$fam <- NULL; all(diff(X$map$position) > 0)
    
    # fitler MAF
    maf <- snpStats::col.summary(X$genotypes)$MAF
    cond <- maf >= 0.05
    X$genotypes <- X$genotypes[,cond]
    X$map <- X$map[cond,]
    
    # format
    colnames(X$genotypes) <- paste0(X$map$chromosome,":",X$map$position)
    snps <- methods::as(object=X$genotypes,Class="numeric")
    class(snps) <- "integer"
    
    # change identifiers
    file <- "E-GEUV-1.sdrf.txt"
    url <- paste("http://www.ebi.ac.uk/arrayexpress/files/E-GEUV-1/",file,sep="")
    destfile <- file.path(path$data,file)
    if(!file.exists(destfile)){
        utils::download.file(url=url,destfile=destfile,method="auto")
    }
    samples <- utils::read.delim(file=file.path(path,"E-GEUV-1.sdrf.txt"))
    match <- match(rownames(snps),samples$Source.Name)
    rownames(snps) <- samples$Comment.ENA_RUN.[match]
    snps <- snps[!is.na(rownames(snps)),]
    
    save(object=snps,file=file.path(path,paste0("Geuvadis.chr",chr,".RData")))
}


#' @export
#' @title
#' Get SNP data (BBMRI)
#' 
#' @description
#' This function transforms SNP data (virtual machine).
#' 
#' @param chr
#' chromosome: integer \eqn{1-22}
#' 
#' @param biobank
#' character "CODAM", "LL", "LLS", "NTR", "PAN", "RS", or NULL (all)
#' 
#' @param path
#' data directory
#' 
Rauschenberger's avatar
Rauschenberger committed
83
#' @param size
Rauschenberger's avatar
Rauschenberger committed
84
85
#' maximum number of SNPs to read in at once;
#' trade-off between memory usage (low) and speed (high)
Rauschenberger's avatar
Rauschenberger committed
86
#' 
Rauschenberger's avatar
Rauschenberger committed
87
88
89
#' @examples
#' path <- "/virdir/Scratch/arauschenberger/trial"
#'
Rauschenberger's avatar
Rauschenberger committed
90
get.snps.bbmri <- function(chr,biobank=NULL,path=getwd(),size=500*10^3){
Rauschenberger's avatar
Rauschenberger committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

    start <- Sys.time()
    message(rep("-",times=20)," chromosome ",chr," ",rep("-",times=20))
    
    p <- 5*10^6 # (maximum number of SNPs per chromosome, before filtering)
    skip <- seq(from=0,to=p,by=size)
    if(is.null(biobank)){
        study <- c("CODAM","LL","LLS0","LLS1","NTR0","NTR1","PAN","RS")
    } else if(biobank=="LLS"){
        study <- c("LLS0","LLS1")
    } else if(biobank=="NTR"){
        study <- c("NTR0","NTR1")
    } else if(!biobank %in% c("CODAM","LL","PAN","RS")){
        study <- biobank
    } else{
        stop("Invalid biobank.",call.=FALSE)
    }
    collect <- matrix(list(),nrow=length(skip),ncol=length(study))
    colnames(collect) <- study
    
    for(i in seq_along(skip)){
        message("\n","chunk ",i,": ",appendLF=FALSE)
        for(j in seq_along(study)){
            message(study[j],"  ",appendLF=FALSE)
            
            # Locating files on virtual machine.
            dir <- study[j]
            if(study[j]=="LLS0"){dir <- "LLS/660Q"}
            if(study[j]=="LLS1"){dir <- "LLS/OmniExpr"}
            if(study[j]=="NTR0"){dir <- "NTR/Affy6"}
            if(study[j]=="NTR1"){dir <- "NTR/GoNL"}
            path0 <- file.path("/mnt/virdir/Backup/RP3_data/HRCv1.1_Imputation",dir)
Rauschenberger's avatar
Rauschenberger committed
123
            path1 <- path
Rauschenberger's avatar
Rauschenberger committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
            file0 <- paste0("chr",chr,".dose.vcf.gz")
            file1 <- paste0(study[j],".chr",chr,".dose.vcf.gz")
            file2 <- paste0(study[j],".chr",chr,".dose.vcf")
            
            # Decompressing missing files in personal folder.
            if(!file.exists(file.path(path1,file2))){
                file.copy(from=file.path(path0,file0),to=file.path(path1,file1))
                R.utils::gunzip(filename=file.path(path1,file1),remove=TRUE,overwrite=TRUE)
            }
            
            # Reading in files.
            vcf <- vcfR::read.vcfR(file=file.path(path1,file2),skip=skip[i],nrows=size,verbose=FALSE)
            vcf <- vcf[vcf@fix[,"CHROM"]!="",] # bug fix
            vcf@fix[,"ID"] <- paste0(vcf@fix[,"ID"],"_",seq_len(dim(vcf)["variants"]))
            collect[i,j][[1]] <- vcf
            stop <- dim(vcf)["variants"]==0
            final <- dim(vcf)["variants"]<size
            if(stop){break}
        }
        print(utils::object.size(collect),units="Gb")
        end <- Sys.time()
        if(stop){break}
        
        # Calculating minor allele frequency.
        num <- numeric(); maf <- list()
        for(j in seq_along(study)){
            num[j] <- dim(collect[i,j][[1]])["gt_cols"] # replace by adjusted sample sizes?
            maf[[j]] <- num[j]*vcfR::maf(collect[i,j][[1]])[,"Frequency"]
        }
        cond <- rowSums(do.call(what="cbind",args=maf))/sum(num)>0.05
        if(sum(cond)==0){if(final){break}else{next}}
        
        # Filtering out genotypes.
        for(j in seq_along(study)){
            gt <- vcfR::extract.gt(collect[i,j][[1]][cond,])
            gt[gt=="0|0"] <- 0
            gt[gt=="0|1"|gt=="1|0"] <- 1
            gt[gt=="1|1"] <- 2
            storage.mode(gt) <- "integer"
            collect[i,j][[1]] <- gt
        }
        
        if(final){break}
    }
    
    # Removing empty rows.
    cond <- apply(collect,1,function(x) all(sapply(x,length)==0))
    collect <- collect[!cond,,drop=FALSE]
Rauschenberger's avatar
Rauschenberger committed
172
    #save(object=collect,file=file.path(path1,paste0("temp.chr",chr,".RData")))
Rauschenberger's avatar
Rauschenberger committed
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
    #load(file.path(path1,paste0("temp.chr",chr,".RData")))
    
    # Fusing all matrices.
    snps <- NULL
    for(i in seq_len(nrow(collect))){
        inner <- NULL
        for(j in seq_len(ncol(collect))){
            add <- collect[i,j][[1]]
            colnames(add) <- paste0(colnames(collect)[j],":",colnames(add))
            inner <- cbind(inner,add)
        }
        snps <- rbind(snps,inner)
    }
    attributes(snps)$time <- end-start
    rownames(snps) <- sapply(strsplit(x=rownames(snps),split="_"),function(x) x[[1]])
    snps <- t(snps)
    
    # Filter samples.
    rownames(snps) <- sub(x=rownames(snps),pattern="LLS0|LLS1",replacement="LLS")
    rownames(snps) <- sub(x=rownames(snps),pattern="NTR0|NTR1",replacement="NTR")
Rauschenberger's avatar
Rauschenberger committed
193

Rauschenberger's avatar
Rauschenberger committed
194
195
196
197
198
    if(is.null(biobank)){
        save(object=snps,file=file.path(path1,paste0("BBMRI.chr",chr,".RData")))
    } else {
        save(object=snps,file=file.path(path1,paste0(biobank,".chr",chr,".RData")))
    }
Rauschenberger's avatar
Rauschenberger committed
199
200
201
    
    # Remove temporary files.
    for(j in seq_along(study)){
Rauschenberger's avatar
Rauschenberger committed
202
        file.remove(file.path(path1,paste0(study[j],".chr",chr,".dose.vcf")))
Rauschenberger's avatar
Rauschenberger committed
203
204
    }
    
Rauschenberger's avatar
Rauschenberger committed
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
}


#' @export
#' @title
#' Get exon data (Geuvadis)
#' 
#' @description
#' This function transforms exon data (virtual machine).
#' 
#' @param path
#' data directory 
#' 
#' @examples
#' path <- "/virdir/Scratch/arauschenberger/trial"
#' 
get.exons.geuvadis <- function(path=getwd()){

    nrows <- 303544
    file <-"/virdir/Scratch/rmenezes/data_counts.txt"
    exons <- utils::read.table(file=file,header=TRUE,nrows=nrows)
    exons <- exons[exons[,"chr"] %in% 1:22,] # autosomes
    rownames(exons) <- exon_id <- paste0(exons[,"chr"],"_",exons[,"start"],"_",exons[,"end"])
    gene_id <- as.character(exons[,4])
    exons <- t(exons[,-c(1:4)])

    save(list=c("exons","exon_id","gene_id"),file=file.path(path,"Geuvadis.exons.RData"))
}


#' @export
#' @title
#' Get exon data (BBMRI)
#' 
#' @description
#' This function transforms exon data (virtual machine).
#' 
#' @param path
#' data directory 
#' 
#' @examples
#' path <- "/virdir/Scratch/arauschenberger/trial"
#' 
get.exons.bbmri <- function(path=getwd()){
    
    # sample identifiers:
    # (1) loading quality controlled gene expression data 
    # (2) extracting sample identifiers
    # (3) removing identifiers without SNP data
    # (4) translating identifiers
    utils::data(rnaSeqData_ReadCounts_BIOS_cleaned,package="BBMRIomics") # (1)
Rauschenberger's avatar
Rauschenberger committed
256
257
    cd <- SummarizedExperiment::colData(counts)[,c("biobank_id","imputation_id","run_id")] # (2)
    counts <- NULL
Rauschenberger's avatar
Rauschenberger committed
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
    names(cd) <- substr(names(cd),start=1,stop=3) # abbreviate names
    cd <- cd[!is.na(cd$imp),] # (3)
    cd$id <- NA # (4)
    cd$id[cd$bio=="CODAM"] <- sapply(strsplit(x=cd$imp[cd$bio=="CODAM"],split="_"),function(x) x[[2]])
    cd$id[cd$bio=="LL"] <- sub(pattern="1_LLDeep_",replacement="",x=cd$imp[cd$bio=="LL"])
    cd$id[cd$bio=="LLS"] <- sapply(strsplit(x=cd$imp[cd$bio=="LLS"],split="_"),function(x) x[[2]])
    cd$id[cd$bio=="NTR"] <- sapply(strsplit(x=cd$imp[cd$bio=="NTR"],split="_"),function(x) x[[2]])
    cd$id[cd$bio=="PAN"] <- cd$imp[cd$bio=="PAN"]
    cd$id[cd$bio=="RS"] <- sub(pattern="RS1_|RS2_|RS3_",replacement="",x=cd$imp[cd$bio=="RS"])
    
    # Identify individual not with "id" but with "bio:id".
    any(duplicated(cd$id)) # TRUE
    sapply(unique(cd$bio),function(x) any(duplicated(cd$id[x]))) # FALSE
    
    # exon data:
    # (1) loading exon expression data
    # (2) extracting sample identifiers
    # (3) retaining autosomes
    # (4) retaining samples from above
    load("/virdir/Backup/RP3_data/RNASeq/v2.1.3/exon_base/exon_base_counts.RData") # (1)
    colnames(counts) <- sub(pattern=".exon.base.count.gz",replacement="",x=colnames(counts)) # (2)
    autosomes <- sapply(strsplit(x=rownames(counts),split="_"),function(x) x[[1]] %in% 1:22) # (3)
    exons <- counts[autosomes,cd$run] # (3) and (4)
    exon_id <- exon_id[autosomes] # (3)
    gene_id <- gene_id[autosomes] # (3)
    colnames(exons) <- paste0(cd$bio,":",cd$id)
    exons <- t(exons)
    
    save(list=c("exons","exon_id","gene_id"),file=file.path(path,"BBMRI.exons.RData"))
}


Rauschenberger's avatar
Rauschenberger committed
290
291
292
293
294
#' @export
#' @title
#' Prepare data matrices
#' 
#' @description
Rauschenberger's avatar
Rauschenberger committed
295
296
#' This function removes duplicate samples from each matrix,
#' only retains samples appearing in all matrices,
Rauschenberger's avatar
Rauschenberger committed
297
#' and brings samples into the same order.
Rauschenberger's avatar
Rauschenberger committed
298
#' 
Rauschenberger's avatar
Rauschenberger committed
299
#' @param ...
Rauschenberger's avatar
Rauschenberger committed
300
301
#' matrices with samples in the rows and variables in the columns,
#' with sample identifiers as rows names
Rauschenberger's avatar
Rauschenberger committed
302
#' 
Rauschenberger's avatar
Rauschenberger committed
303
304
#' @param message
#' display messages\strong{:} logical
Rauschenberger's avatar
Rauschenberger committed
305
306
#' 
#' @examples
Rauschenberger's avatar
Rauschenberger committed
307
308
309
#' X <- matrix(rnorm(6),nrow=3,ncol=2,dimnames=list(c("A","B","C")))
#' Z <- matrix(rnorm(9),nrow=3,ncol=3,dimnames=list(c("B","A","B")))
#' match.samples(X,Z)
Rauschenberger's avatar
Rauschenberger committed
310
#' 
Rauschenberger's avatar
Rauschenberger committed
311
match.samples <- function(...,message=TRUE){
Rauschenberger's avatar
Rauschenberger committed
312
    
Rauschenberger's avatar
Rauschenberger committed
313
314
    list <- list(...)
    if(length(list)==1 & is.list(list[[1]])){list <- list[[1]]}
Rauschenberger's avatar
Rauschenberger committed
315
316
317
318
319
    if(is.null(names(list))){
        names(list) <- sapply(substitute(list(...))[-1],deparse)
    }
    names <- names(list)
    
Rauschenberger's avatar
Rauschenberger committed
320
    # check input
Rauschenberger's avatar
Rauschenberger committed
321
322
323
    cond <- sapply(list,function(x) !is.matrix(x))
    if(any(cond)){
        stop("Provide matrices!",call.=FALSE)
Rauschenberger's avatar
Rauschenberger committed
324
    }
Rauschenberger's avatar
Rauschenberger committed
325
326
327
    cond <- sapply(list,function(x) is.null(rownames(x)))
    if(any(cond)){
        stop("Provide row names!",call.=FALSE)
Rauschenberger's avatar
Rauschenberger committed
328
329
    }
    
Rauschenberger's avatar
Rauschenberger committed
330
    # remove duplicated samples
Rauschenberger's avatar
Rauschenberger committed
331
    duplic <- lapply(list,function(x) duplicated(rownames(x)))
Rauschenberger's avatar
Rauschenberger committed
332
    for(i in seq_along(list)){
Rauschenberger's avatar
Rauschenberger committed
333
334
335
        number <- round(100*mean(duplic[[i]]))
        if(message){message(number," duplicates in \"",names[i],"\"")}
        list[[i]] <- list[[i]][!duplic[[i]],,drop=FALSE]
Rauschenberger's avatar
Rauschenberger committed
336
    }
Rauschenberger's avatar
Rauschenberger committed
337
338
    
    # retain overlapping samples
Rauschenberger's avatar
Rauschenberger committed
339
340
341
    all <- Reduce(f=intersect,x=lapply(list,rownames))
    for(i in seq_along(list)){
        percent <- round(100*mean(rownames(list[[i]]) %in% all))
Rauschenberger's avatar
Rauschenberger committed
342
        if(message){message(percent,"% overlap in \"",names[i],"\"")}
Rauschenberger's avatar
Rauschenberger committed
343
        list[[i]] <- list[[i]][all,,drop=FALSE]
Rauschenberger's avatar
Rauschenberger committed
344
    }
Rauschenberger's avatar
Rauschenberger committed
345
346
    
    # check output
Rauschenberger's avatar
Rauschenberger committed
347
348
    cond <- sapply(list,function(x) any(duplicated(rownames(x))))
    if(any(cond)){
Rauschenberger's avatar
Rauschenberger committed
349
350
        stop("Duplicate samples!",call.=FALSE)
    }
Rauschenberger's avatar
Rauschenberger committed
351
352
    cond <- sapply(list,function(x) nrow(x)!=nrow(list[[1]]))
    if(any(cond)){
Rauschenberger's avatar
Rauschenberger committed
353
354
        stop("Different sample sizes!",call.=FALSE)
    }
Rauschenberger's avatar
Rauschenberger committed
355
356
    cond <- sapply(list,function(x) any(rownames(x)!=rownames(list[[1]])))
    if(any(cond)){
Rauschenberger's avatar
Rauschenberger committed
357
358
359
        stop("Different sample names!",call.=FALSE)
    }
    
Rauschenberger's avatar
Rauschenberger committed
360
    return(list)
Rauschenberger's avatar
Rauschenberger committed
361
362
363
364
365
366
367
}

#' @export
#' @title
#' Adjust library sizes
#' 
#' @description
Rauschenberger's avatar
Rauschenberger committed
368
#' This function adjusts RNA-seq expression data for different library sizes.
Rauschenberger's avatar
Rauschenberger committed
369
#' 
Rauschenberger's avatar
Rauschenberger committed
370
371
#' @param x
#' matrix with \eqn{n} rows (samples) and \eqn{p} columns (variables)
Rauschenberger's avatar
Rauschenberger committed
372
373
#' 
#' @examples
Rauschenberger's avatar
Rauschenberger committed
374
375
376
377
#' n <- 5; p <- 10
#' x <- matrix(rnbinom(n=n*p,mu=5,size=1/0.5),nrow=n,ncol=p)
#' x[1,] <- 10*x[1,]
#' adjust.samples(x)
Rauschenberger's avatar
Rauschenberger committed
378
#' 
Rauschenberger's avatar
Rauschenberger committed
379
adjust.samples <- function(x){
Rauschenberger's avatar
Rauschenberger committed
380
381
382
383
384
385
    if(!is.matrix(x)){
        stop("no matrix argument",call.=FALSE)
    }
    if(!is.numeric(x)){
        stop("no numeric argument",call.=FALSE)
    }
Rauschenberger's avatar
Rauschenberger committed
386
    if(!is.integer(x)&&any(round(x)!=x)){
Rauschenberger's avatar
Rauschenberger committed
387
        warning("non-integer values",call.=FALSE)
Rauschenberger's avatar
Rauschenberger committed
388
    }
Rauschenberger's avatar
Rauschenberger committed
389
    if(any(x<0)){
Rauschenberger's avatar
Rauschenberger committed
390
        warning("negative values",call.=FALSE)
Rauschenberger's avatar
Rauschenberger committed
391
    }
Rauschenberger's avatar
Rauschenberger committed
392
393
394
    n <- nrow(x); p <- ncol(x)
    lib.size <- rowSums(x)
    norm.factors <- edgeR::calcNormFactors(object=t(x),lib.size=lib.size)
Rauschenberger's avatar
Rauschenberger committed
395
    gamma <- norm.factors*lib.size/mean(lib.size)
Rauschenberger's avatar
Rauschenberger committed
396
    gamma <- matrix(gamma,nrow=n,ncol=p,byrow=FALSE)
Rauschenberger's avatar
Rauschenberger committed
397
398
    x <- x/gamma
    return(x)
Rauschenberger's avatar
Rauschenberger committed
399
400
401
402
403
404
405
406
407
}

#' @export
#' @title
#' Adjust exon length
#' 
#' @description
#' This function adjusts exon expression data for different exon lengths.
#' 
Rauschenberger's avatar
Rauschenberger committed
408
#' @param x
Rauschenberger's avatar
Rauschenberger committed
409
410
#' matrix with \eqn{n} rows (samples) and \eqn{p} columns (exons)
#' 
Rauschenberger's avatar
Rauschenberger committed
411
#' @param offset
Rauschenberger's avatar
Rauschenberger committed
412
#' exon length\strong{:} vector of length \eqn{p}
Rauschenberger's avatar
Rauschenberger committed
413
#' 
Rauschenberger's avatar
Rauschenberger committed
414
415
#' @param group
#' gene names\strong{:} vector of length \eqn{p}
Rauschenberger's avatar
Rauschenberger committed
416
417
418
419
#' 
#' @examples
#' NA
#' 
Rauschenberger's avatar
Rauschenberger committed
420
adjust.covariates <- function(x,offset,group){
Rauschenberger's avatar
Rauschenberger committed
421
422
423
    if(!is.numeric(x)|!is.matrix(x)){
        stop("Argument \"x\" is no numeric matrix.",call.=FALSE)
    }
Rauschenberger's avatar
Rauschenberger committed
424
425
426
427
428
    if(!is.numeric(offset)|!is.vector(offset)){
        stop("Argument \"offset\" is no numeric vector.",call.=FALSE)
    }
    if(any(offset<0)){
        stop("Argument \"offset\" takes negative values",call.=FALSE)   
Rauschenberger's avatar
Rauschenberger committed
429
    }
Rauschenberger's avatar
Rauschenberger committed
430
431
432
433
    if(!is.character(group)|!is.vector(group)){
        stop("Argument \"group\" is no character vector.",call.=FALSE)
    }
    if(ncol(x)!=length(group)|ncol(x)!=length(offset)){
Rauschenberger's avatar
Rauschenberger committed
434
435
        stop("Contradictory dimensions.",call.=FALSE)
    }
Rauschenberger's avatar
Rauschenberger committed
436
437
    n <- nrow(x); p <- ncol(x); names <- dimnames(x)
    x <- as.numeric(x)
Rauschenberger's avatar
Rauschenberger committed
438
    offset <- rep(offset,each=n)
Rauschenberger's avatar
Rauschenberger committed
439
440
441
442
443
444
445
    group <- strsplit(group,split=",")
    group <- sapply(group,function(x) x[[1]][1])
    group <- rep(group,each=n)
    lmer <- lme4::lmer(x ~ offset + (1|group))
    x <- matrix(stats::residuals(lmer),nrow=n,ncol=p,dimnames=names)
    x <- x-min(x)
    return(x)
Rauschenberger's avatar
Rauschenberger committed
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
}

#' @export
#' @title
#' Search for genes
#' 
#' @description
#' This function retrieves all genes on a chromosome.
#' 
#' @param chr
#' chromosome\strong{:} integer 1-22
#' 
#' @param path
#' path to gene transfer format files (.gtf)
#' 
#' @param release
#' character "NCBI36", "GRCh37", or "GRCh38"
#' 
#' @param build
#' integer 49-91
#' 
#' @examples
#' NA
#' 
Rauschenberger's avatar
Rauschenberger committed
470
471
472
map.genes <- function(chr,path=getwd(),release="GRCh37",build=71){
    
    # check input
Rauschenberger's avatar
Rauschenberger committed
473
    if(!chr %in% 1:22){
Rauschenberger's avatar
Rauschenberger committed
474
475
476
477
478
479
480
481
482
        stop("Invalid argument \"chr\".",call.=FALSE)
    }
    if(!release %in% c("NCBI36","GRCh37","GRCh38")){
        stop("Invalid argument \"release\".",call.=FALSE)
    }
    if(!build %in% 49:91){
        stop("Invalid argument \"build\".",call.=FALSE)
    }
    
Rauschenberger's avatar
Rauschenberger committed
483
484
    file <- paste0("Homo_sapiens.",release,".",build,".gtf")
    if(!file.exists(file.path(path,file))){
Rauschenberger's avatar
Rauschenberger committed
485
486
487
488
489
490
491
492
493
        url <- paste0("ftp://ftp.ensembl.org/pub/release-",build,
                      "/gtf/homo_sapiens/",file,".gz")
        destfile <- file.path(path,paste0(file,".gz"))
        utils::download.file(url=url,destfile=destfile,method="auto")
        R.utils::gunzip(filename=destfile,remove=FALSE,overwrite=TRUE)
    }
    object <- refGenome::ensemblGenome()
    refGenome::basedir(object) <- path
    refGenome::read.gtf(object,filename=file)
Rauschenberger's avatar
Rauschenberger committed
494
495
496
497
498
499
    x <- refGenome::getGenePositions(object=object,by="gene_id")
    x <- x[x$seqid==chr & x$gene_biotype=="protein_coding",]
    x <- x[,c("gene_id","seqid","start","end")]
    rownames(x) <- NULL
    colnames(x)[colnames(x)=="seqid"] <- "chr"
    return(x)
Rauschenberger's avatar
Rauschenberger committed
500
501
502
503
504
505
506
507
508
}

#' @export
#' @title
#' Search for exons
#' 
#' @description
#' This function
#' 
Rauschenberger's avatar
Rauschenberger committed
509
#' @param gene
Rauschenberger's avatar
Rauschenberger committed
510
511
#' gene names\strong{:} vector with one entry per gene,
#' including the gene names
Rauschenberger's avatar
Rauschenberger committed
512
#' 
Rauschenberger's avatar
Rauschenberger committed
513
#' @param exon
Rauschenberger's avatar
Rauschenberger committed
514
515
516
#' exon names\strong{:} vector with one entry per exon,
#' including the corresponding \emph{gene} names
#' (separated by comma if multiple gene names)
Rauschenberger's avatar
Rauschenberger committed
517
518
519
520
521
522
#' 
#' @details
#' The exon names should contain the gene names. For each gene, this function
#' returns the indices of the exons.
#' 
#' @examples
Rauschenberger's avatar
Rauschenberger committed
523
524
525
#' gene <- c("A","B","C")
#' exon <- c("A","A,B","B","B,C","C")
#' map.exons(gene,exon)
Rauschenberger's avatar
Rauschenberger committed
526
#'
Rauschenberger's avatar
Rauschenberger committed
527
528
529
map.exons <- function(gene,exon){
    p <- length(gene)
    x <- list()
Rauschenberger's avatar
Rauschenberger committed
530
531
532
    pb <- utils::txtProgressBar(min=0,max=p,style=3)
    for(i in seq_len(p)){
        utils::setTxtProgressBar(pb=pb,value=i)
Rauschenberger's avatar
Rauschenberger committed
533
534
        which <- as.integer(grep(pattern=gene[i],x=exon))
        x[[i]] <- which
Rauschenberger's avatar
Rauschenberger committed
535
    }
Rauschenberger's avatar
Rauschenberger committed
536
537
538
    close(con=pb)
    names(x) <- gene
    return(x)
Rauschenberger's avatar
Rauschenberger committed
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
}

#' @export
#' @title
#' Search for SNPs
#' 
#' @description
#' This function
#' 
#' @param gene.chr
#' chromosome\strong{:}
#' numeric vector with one entry per gene
#' 
#' @param gene.start
#' start position\strong{:}
#' numeric vector with one entry per gene
#' 
#' @param gene.end
#' end position\strong{:}
#' numeric vector with one entry per gene
#' 
#' @param snp.chr
#' integer 1-22
#' 
#' @param snp.pos
#' chromosomal position of SNPs\strong{:}
#' numeric vector with one entry per SNP
#' 
Rauschenberger's avatar
Rauschenberger committed
567
568
569
570
#' @param dist
#' number of base pairs before start position\strong{:}
#' integer
#' 
Rauschenberger's avatar
Rauschenberger committed
571
#' @examples
Rauschenberger's avatar
Rauschenberger committed
572
573
574
#' gene.chr <- rep(1,times=5)
#' gene.start <- 1:5
#' gene.end <- 2:6
Rauschenberger's avatar
Rauschenberger committed
575
#'
Rauschenberger's avatar
Rauschenberger committed
576
577
578
579
580
581
#' snp.chr <- rep(1,times=100)
#' snp.pos <- seq(from=1,to=4.9,length.out=100)
#' 
#' map.snps(gene.chr,gene.start,gene.end,snp.chr,snp.pos,dist=0)
#'
map.snps <- function(gene.chr,gene.start,gene.end,snp.chr,snp.pos,dist=10^3){
Rauschenberger's avatar
Rauschenberger committed
582
583
584
585
    if(length(gene.chr)!=length(gene.start)|length(gene.chr)!=length(gene.end)){
        stop("Invalid.",call.=FALSE)
    }
    p <- length(gene.start)
Rauschenberger's avatar
Rauschenberger committed
586
    x <- data.frame(from=integer(length=p),to=integer(length=p))
Rauschenberger's avatar
Rauschenberger committed
587
588
589
590
591
    pb <- utils::txtProgressBar(min=0,max=p,style=3)
    for(i in seq_len(p)){ # 
        utils::setTxtProgressBar(pb=pb,value=i)
        chr <- snp.chr == gene.chr[i]
        if(!any(chr)){next}
Rauschenberger's avatar
Rauschenberger committed
592
        start <- snp.pos >= (gene.start[i] - dist)
Rauschenberger's avatar
Rauschenberger committed
593
594
595
        end <- snp.pos <= gene.end[i] + 0
        which <- as.integer(which(chr & start & end))
        if(length(which)==0){next}
Rauschenberger's avatar
Rauschenberger committed
596
597
        x$from[i] <- min(which)
        x$to[i] <- max(which)
Rauschenberger's avatar
Rauschenberger committed
598
599
600
        if(length(which)==1){next}
        if(!all(diff(which)==1)){stop("SNPs are in wrong order!")}
    }
Rauschenberger's avatar
Rauschenberger committed
601
602
    close(con=pb)
    return(x)
Rauschenberger's avatar
Rauschenberger committed
603
604
605
606
}

#' @export
#' @title
Rauschenberger's avatar
Rauschenberger committed
607
#' Drop trivial tests
Rauschenberger's avatar
Rauschenberger committed
608
609
610
611
612
613
614
615
616
#' 
#' @description
#' This function
#' 
#' @param map
#' list with names "genes", "exons", and "snps"
#' (output from \code{map.genes}, \code{map.exons}, and \code{map.snps})
#' 
#' @details
Rauschenberger's avatar
Rauschenberger committed
617
#' This functions drops tests for genes without SNPs or with a single exon.
Rauschenberger's avatar
Rauschenberger committed
618
619
620
621
#' 
#' @examples
#' NA
#' 
Rauschenberger's avatar
Rauschenberger committed
622
drop.trivial <- function(map){
Rauschenberger's avatar
Rauschenberger committed
623
624
625
626
627
628
629
630
631
632
633
    
    # check input
    if(length(map)!=3){
        stop("Unexpected argument length.",call.=FALSE)
    }
    if(any(names(map)!=c("genes","exons","snps"))){
        stop("Unexpected argument names.",call.=FALSE)
    }
    
    # search
    p <- nrow(map$genes)
Rauschenberger's avatar
Rauschenberger committed
634
635
    pass <- rep(NA,times=p)
    pb <- utils::txtProgressBar(min=0,max=p,style=3)
Rauschenberger's avatar
Rauschenberger committed
636
    for(i in seq_len(p)){
Rauschenberger's avatar
Rauschenberger committed
637
638
639
640
641
642
643
644
645
646
        utils::setTxtProgressBar(pb=pb,value=i)
        ys <- map$exons[[i]]
        check <- logical()
        # Exclude genes without SNPs:
        check[1] <- map$snps$from[i] > 0
        check[2] <- map$snps$to[i] > 0
        # Exclude genes with single exon:
        check[3] <- length(ys) > 1
        pass[i] <- all(check)
    }
Rauschenberger's avatar
Rauschenberger committed
647
    close(con=pb)
Rauschenberger's avatar
Rauschenberger committed
648
649
650
651
652
653
654
655
656
    
    # check output
    if(any(pass[map$snps$to==0 & map$snps$from==0])){
        stop("Genes without any SNPs.",call.=FALSE)
    }
    if(any(pass[sapply(map$exons,length)<2])){
        stop("Genes without multiple exons.",call.=FALSE)
    }
    
Rauschenberger's avatar
Rauschenberger committed
657
658
659
660
    map$genes <- map$genes[pass,]
    map$exons <- map$exons[pass]
    map$snps <- map$snps[pass,]
    return(map)
Rauschenberger's avatar
Rauschenberger committed
661
662
663
664
665
}


#' @export
#' @title
Rauschenberger's avatar
Rauschenberger committed
666
#' Conduct single tests
Rauschenberger's avatar
Rauschenberger committed
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
#' 
#' @description
#' This function
#' 
#' @param Y
#' exon expression\strong{:}
#' matrix with \eqn{n} rows (samples) and \eqn{p} columns (exons)
#' 
#' @param X
#' SNP genotype\strong{:}
#' matrix with \eqn{n} rows (samples) and \eqn{q} columns (SNPs)
#' 
#' @param map
#' list with names "genes", "exons", and "snps"
#' (output from \code{map.genes}, \code{map.exons}, and \code{map.snps})
#' 
#' @param i
#' gene index\strong{:}
#' integer between \eqn{1} and \code{nrow(map$genes)}
#' 
#' @param limit
#' cutoff for rounding \code{p}-values
#' 
#' @param steps
#' size of permutation chunks\strong{:}
#' integer vector
#' 
Rauschenberger's avatar
Rauschenberger committed
694
695
696
#' @param rho
#' correlation\strong{:}
#' numeric vector with values between \eqn{0} and \eqn{1}
Rauschenberger's avatar
Rauschenberger committed
697
#' 
Rauschenberger's avatar
Rauschenberger committed
698
699
700
701
702
703
704
705
#' @details
#' The maximum number of permutations equals \code{sum(steps)}. Permutations is
#' interrupted if at least \code{limit} test statistics for the permuted data
#' are larger than the test statistic for the observed data.
#' 
#' @examples
#' NA
#' 
Rauschenberger's avatar
Rauschenberger committed
706
test.single <- function(Y,X,map,i,limit=NULL,steps=NULL,rho=c(0,0.5,1)){
Rauschenberger's avatar
Rauschenberger committed
707
708
709
    
    if(is.null(limit)){limit <- 5}
    if(is.null(steps)){steps <- c(10,20,20,50)}
Rauschenberger's avatar
Rauschenberger committed
710
    
Rauschenberger's avatar
Rauschenberger committed
711
    # check input
Rauschenberger's avatar
Rauschenberger committed
712
713
714
715
716
717
    if(!is.numeric(limit)){
        stop("Argument \"limit\" is not numeric.",call.=FALSE)
    }
    if(limit<1){
        stop("Argument \"limit\" is below one.",call.=FALSE)
    }
Rauschenberger's avatar
Rauschenberger committed
718
    if(!is.numeric(steps)|!is.vector(steps)){
Rauschenberger's avatar
Rauschenberger committed
719
720
721
722
723
724
        stop("Argument \"steps\" is no numeric vector.",call.=FALSE)
    }
    if(sum(steps)<2){
        stop("Too few permutations \"sum(steps)\".",call.=FALSE)
    }
    
Rauschenberger's avatar
Rauschenberger committed
725
    # extract data
Rauschenberger's avatar
Rauschenberger committed
726
    ys <- map$exons[[i]]
Rauschenberger's avatar
Rauschenberger committed
727
    y <- Y[,ys,drop=FALSE]
Rauschenberger's avatar
Rauschenberger committed
728
    xs <- seq(from=map$snps$from[i],to=map$snps$to[i],by=1)
Rauschenberger's avatar
Rauschenberger committed
729
    x <- X[,xs,drop=FALSE]
Rauschenberger's avatar
Rauschenberger committed
730
    
Rauschenberger's avatar
Rauschenberger committed
731
    # test effects
Rauschenberger's avatar
Rauschenberger committed
732
733
    pvalue <- rep(x=NA,times=length(rho))
    for(j in seq_along(rho)){
Rauschenberger's avatar
Rauschenberger committed
734
735
        tstat <- spliceQTL:::G2.multin(
            dep.data=y,indep.data=x,nperm=steps[1]-1,rho=rho[j])$Sg
Rauschenberger's avatar
Rauschenberger committed
736
        for(nperm in steps[-1]){
Rauschenberger's avatar
Rauschenberger committed
737
738
            tstat <- c(tstat,spliceQTL:::G2.multin(
                dep.data=y,indep.data=x,nperm=nperm,rho=rho[j])$Sg[-1])
Rauschenberger's avatar
Rauschenberger committed
739
            if(sum(tstat >= tstat[1]) >= limit){break}
Rauschenberger's avatar
Rauschenberger committed
740
        }
Rauschenberger's avatar
Rauschenberger committed
741
        pvalue[j] <- mean(tstat >= tstat[1],na.rm=TRUE)
Rauschenberger's avatar
Rauschenberger committed
742
    }
Rauschenberger's avatar
Rauschenberger committed
743

Rauschenberger's avatar
Rauschenberger committed
744
745
746
747
    return(pvalue)
}


Rauschenberger's avatar
Rauschenberger committed
748
749
#' @export
#' @title
Rauschenberger's avatar
Rauschenberger committed
750
#' Conduct multiple tests
Rauschenberger's avatar
Rauschenberger committed
751
752
#' 
#' @description
Rauschenberger's avatar
Rauschenberger committed
753
#' This function ...
Rauschenberger's avatar
Rauschenberger committed
754
755
756
757
758
759
760
761
762
#' 
#' @param Y
#' exon expression\strong{:}
#' matrix with \eqn{n} rows (samples) and \eqn{p} columns (exons)
#' 
#' @param X
#' SNP genotype\strong{:}
#' matrix with \eqn{n} rows (samples) and \eqn{q} columns (SNPs)
#' 
Rauschenberger's avatar
Rauschenberger committed
763
764
765
766
#' @param map
#' list with names "genes", "exons", and "snps"
#' (output from \code{map.genes}, \code{map.exons}, and \code{map.snps})
#' 
Rauschenberger's avatar
Rauschenberger committed
767
768
769
770
771
772
773
774
775
776
777
#' @param rho
#' correlation\strong{:}
#' numeric vector with values between \eqn{0} and \eqn{1}
#' 
#' @details
#' Automatic adjustment of the number of permutations
#' such that Bonferroni-significant p-values are possible.
#' 
#' @examples
#' NA
#' 
Rauschenberger's avatar
Rauschenberger committed
778
779
test.multiple <- function(Y,X,map,rho=c(0,0.5,1)){
    
Rauschenberger's avatar
Rauschenberger committed
780
781
782
    p <- nrow(map$genes)
    
    # permutations
Rauschenberger's avatar
Rauschenberger committed
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
    if(FALSE){
        min <- 5
        max <- p/0.05+1
        limit <- ceiling(0.05*max/p)
        base <- 1.5 # adjust sequence
        from <- log(min,base=base)
        to <- log(max,base=base)
        steps <- c(min,diff(unique(round(base^(seq(from=from,to=to,length.out=20))))))
    }
    
    if(TRUE){
        max <- p/0.05+1
        limit <- ceiling(0.05*max/p)
        steps <- diff(limit^seq(from=1,to=log(max)/log(limit),length.out=pmin(p,20)))
        steps <- c(limit,round(steps))
        steps[length(steps)] <- max-sum(steps[-length(steps)])
    }
Rauschenberger's avatar
Rauschenberger committed
800
    
Rauschenberger's avatar
Rauschenberger committed
801
    if(max != sum(steps)){stop("Invalid combination?",call.=FALSE)}
Rauschenberger's avatar
Rauschenberger committed
802
803
804
805
806
    
    # parallel computation
    type <- ifelse(test=.Platform$OS.type=="windows",yes="PSOCK",no="FORK")
    cluster <- parallel::makeCluster(spec=8,type=type)
    parallel::clusterSetRNGStream(cl=cluster,iseed=1)
Rauschenberger's avatar
Rauschenberger committed
807
    parallel::clusterExport(cl=cluster,varlist=c("Y","X","map","limit","steps","rho"),envir=environment())
Rauschenberger's avatar
Rauschenberger committed
808
    start <- Sys.time()
Rauschenberger's avatar
Rauschenberger committed
809
    pvalue <- parallel::parLapply(cl=cluster,X=seq_len(p),fun=function(i) spliceQTL::test.single(Y=Y,X=X,map=map,i=i,limit=limit,steps=steps,rho=rho))
Rauschenberger's avatar
Rauschenberger committed
810
811
812
813
814
    end <- Sys.time()
    parallel::stopCluster(cluster)
    rm(cluster)
    
    # tyding up
Rauschenberger's avatar
Rauschenberger committed
815
    pvalue <- do.call(what=rbind,args=pvalue)
Rauschenberger's avatar
Rauschenberger committed
816
    colnames(pvalue) <- paste0("rho=",rho)
Rauschenberger's avatar
Rauschenberger committed
817
818
    rownames(pvalue) <- map$genes$gene_id
    
Rauschenberger's avatar
Rauschenberger committed
819
    return(pvalue)
Rauschenberger's avatar
Rauschenberger committed
820
821
822
823
}



Rauschenberger's avatar
Rauschenberger committed
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
#--- spliceQTL test functions --------------------------------------------------

# Function: G2.multin
# This is to compute the G2 test statistic under the assumption that the response follows a multinomial distribution
### Input 
### dep data and indep data with samples on the rows and genes on the columns
### grouping: Either a logical value = F or a matrix with a single column and same number of rows as samples. 
###         Column name should be defined.
###         Contains clinical information of the samples. 
###         Should have two groups only. 
### nperm : number of permutations 
### rho: the null correlation between SNPs
### mu: the null correlation between observations corresponding to different exons and different individuals

### Output
### A list containing G2 p.values and G2 test statistics

### Example : G2T = G2(dep.data = cgh, indep.data = expr, grouping=F, stand=TRUE, nperm=1000)
### G2 p.values : G2T$G2p
### G2 TS : G2T$$Sg

Rauschenberger's avatar
Rauschenberger committed
845
G2.multin <- function(dep.data,indep.data,stand=TRUE,nperm=100,grouping=F,rho=0,mu=0){
Rauschenberger's avatar
Rauschenberger committed
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
    
    nperm = nperm
    ## check for the number of samples in dep and indep data
    
    
    if (nrow(dep.data)!=nrow(indep.data)){
        cat("number of samples not same in dep and indep data","\n")
    }
    
    if(any(abs(rho)>1)){
        cat("correlations rho larger than abs(1) are not allowed")
    }
    
    nresponses <- ncol(dep.data)
    ncovariates <- ncol(indep.data)
    ### centering and standardizing the data are not done in this case
    
    #  dep.data = scale(dep.data,center=T,scale=stand)
    #  indep.data = scale(indep.data,center=T,scale=stand)
    
    #### No  grouping of the samples.
    
    ## Calculate U=(I-H)Y and UU', where Y has observations on rows; also tau.mat=X*W.rho*X', 
    ##   where X has observations on rows and variables on columns
    ##  and W.rho = I + rho*(J-I), a square matrix with as many rows as columns in X
    ## NOTE: this formulation uses X with n obs on the rows and m covariates no the columns, so it is the transpose of the first calculations
    nsamples <- nrow(dep.data)
    n.persample <- rowSums(dep.data)
    n.all <- sum(dep.data)
    H <- (1/n.all)*matrix( rep(n.persample,each=nsamples),nrow=nsamples,byrow=T)
    U <- (diag(rep(1,nsamples)) - H) %*% dep.data
    ## Now we may have a vector of values for rho - so we define tau.mat as an array, with the 3rd index corresponding to the value of rho
    tau.mat <- array(0,dim=c(nsamples,nsamples,length(rho)))
    for(xk in 1:length(rho))  
    {  
        if (rho[xk]==0) { tau.mat[,,xk] <- tcrossprod(indep.data) } 
        else { w.rho <- diag(rep(1,ncovariates)) + rho[xk]*(tcrossprod(rep(1,ncovariates)) -diag(rep(1,ncovariates))  )
        tau.mat[,,xk] <- indep.data %*% w.rho %*% t(indep.data)}
        
    }
    ######################################
    ### NOTES ARMIN START ################
    # all(X %*% t(X) == tau.mat[,,1]) # rho = 0 -> TRUE
    # all(X %*% (t(X) %*% X) %*% t(X) == tau.mat[,,1]) # rho = 1
    # plot(as.numeric(X %*% (t(X) %*% X) %*% t(X)),as.numeric(tau.mat[,,1]))
    ### NOTES ARMIN END ##################
    ######################################
    samp_names = 1:nsamples ## this was rownames(indep.data), but I now do this so that rownames do not have to be added to the array tau.mat
    Sg = get.g2stat.multin(U,mu=mu,rho=rho,tau.mat)
    ### now we will have a vector as result, with one value per combination of values of rho and mu
    #
    ### G2 
    ### Permutations
    # When using permutations: only the rows of tau.mat are permuted
    # To check how the permutations can be efficiently applied, see tests_permutation_g2_multin.R
    
    
    perm_samp = matrix(0, nrow=nrow(indep.data), ncol=nperm)   ## generate the permutation matrix
    for(i in 1:ncol(perm_samp)){
        perm_samp[,i] = samp_names[sample(1:length(samp_names),length(samp_names))]
    }
    
    ## permutation starts - recompute tau.mat  (or recompute U each time)
    for (perm in 1:nperm){
        tau.mat.perm = tau.mat[perm_samp[,perm],,,drop=FALSE]          # permute rows
        tau.mat.perm = tau.mat.perm[,perm_samp[,perm],,drop=FALSE]     # permute columns
        
Rauschenberger's avatar
Rauschenberger committed
913
        Sg = c(Sg,spliceQTL:::get.g2stat.multin(U, mu=mu,rho=rho,tau.mat.perm) )
Rauschenberger's avatar
Rauschenberger committed
914
915
916
917
918
919
920
921
922
923
924
925
    }
    
    
    ########################################################################
    
    #### G2 test statistic
    # *** recompute for a vector of values for each case - just reformat the result with as many rows as permutations + 1,
    # and as many columns as combinations of values of rho and mu
    Sg = matrix(Sg,nrow=nperm+1,ncol=length(mu)*length(rho))
    colnames(Sg) <- paste(rep("rho",ncol(Sg)),rep(1:length(rho),each=length(mu)),rep("mu",ncol(Sg)),rep(1:length(mu),length(rho)) )
    
    ### Calculte G2 pval
Rauschenberger's avatar
Rauschenberger committed
926
    G2p =  apply(Sg,2,spliceQTL:::get.pval.percol) 
Rauschenberger's avatar
Rauschenberger committed
927
928
929
930
931
932
933
934
935
936
937
938
    
    return (list(perm = perm_samp,G2p = G2p,Sg = Sg))
}

# Function: get.g2stat.multin
# Computes the G2 test statistic given two data matrices, under a multinomial distribution
# This is used internally by the G2 function
# Inputs: 
#  U = (I-H)Y, a n*K matrix where n=number obs and K=number multinomial responses possible
#  tau.mat = X' W.rho X, a n*n matrix : both square, symmetric matrices with an equal number of rows
# Output: test statistic (single value)
# 
Rauschenberger's avatar
Rauschenberger committed
939
get.g2stat.multin <- function(U, mu, rho, tau.mat){
Rauschenberger's avatar
Rauschenberger committed
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
    g2tstat <- NULL
    for(xk in 1:length(rho))
    {
        for(xj in 1:length(mu))
        {
            if(mu[xj]==0) { g2tstat <- c(g2tstat, sum( diag( tcrossprod(U) %*% tau.mat[,,xk] ) ) )
            } else {
                g2tstat <- c(g2tstat, (1-mu[xj])*sum(diag( tcrossprod(U) %*% tau.mat[,,xk] ) ) + mu[xj]*sum( t(U) %*% tau.mat[,,xk] %*% U )  )
            }
            
        }
    }
    g2tstat
}

# Function: get.pval.percol
# This function takes a vector containing the observed test stat as the first entry, followed by values generated by permutation,
# and computed the estimated p-value
# Input
# x: a vector with length nperm+1
# Output
# the pvalue computed
get.pval.percol <- function(x){
    pval = mean(x[1]<= c(Inf , x[2:length(x)]))
    pval
}