functions.R 23.1 KB
Newer Older
Armin Rauschenberger's avatar
Armin Rauschenberger committed
1

Armin Rauschenberger's avatar
Armin Rauschenberger committed
2
#--- Workhorse function --------------------------------------------------------
Armin Rauschenberger's avatar
Armin Rauschenberger committed
3

Armin Rauschenberger's avatar
Armin Rauschenberger committed
4 5
#' @export
#' @title
Armin Rauschenberger's avatar
Armin Rauschenberger committed
6
#' Logistic regression with a continuous response
Armin Rauschenberger's avatar
Armin Rauschenberger committed
7 8
#' 
#' @description
Armin Rauschenberger's avatar
Armin Rauschenberger committed
9
#' Implements logistic regression with a continuous response.
Armin Rauschenberger's avatar
Armin Rauschenberger committed
10 11 12 13 14 15
#'  
#' @param y
#' continuous response\strong{:}
#' vector of length \eqn{n}
#' 
#' @param cutoff
Armin Rauschenberger's avatar
Armin Rauschenberger committed
16
#' cutoff point for dichotomising response into classes\strong{:}
Armin Rauschenberger's avatar
Armin Rauschenberger committed
17 18 19 20
#' value between \code{min(y)} and \code{max(y)}
#' 
#' @param X
#' covariates\strong{:}
Armin Rauschenberger's avatar
Armin Rauschenberger committed
21
#' numeric matrix with \eqn{n} rows (samples)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
22
#' and \eqn{p} columns (variables)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
23
#' 
Armin Rauschenberger's avatar
Armin Rauschenberger committed
24 25 26 27
#' @param alpha
#' elastic net mixing parameter\strong{:}
#' numeric between \eqn{0} (ridge) and \eqn{1} (lasso)
#' 
Armin Rauschenberger's avatar
Armin Rauschenberger committed
28 29 30 31
#' @param foldid
#' fold identifiers\strong{:}
#' vector with entries between \eqn{1} and \code{nfolds};
#' or \code{NULL} (balance)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
32 33 34 35
#' 
#' @param nfolds
#' number of folds
#' 
Armin Rauschenberger's avatar
Armin Rauschenberger committed
36
#' @param type.measure
Armin Rauschenberger's avatar
Armin Rauschenberger committed
37 38 39
#' loss function for binary classification
#' (linear regression uses the deviance)
#' 
Armin Rauschenberger's avatar
Armin Rauschenberger committed
40 41 42 43 44 45 46 47
#' @param pi
#' pi sequence\strong{:}
#' vector of values in the unit interval;
#' or \code{NULL} (default sequence)
#' 
#' @param npi
#' number of \code{pi} values
#' 
Armin Rauschenberger's avatar
Armin Rauschenberger committed
48 49 50 51 52 53 54 55
#' @param sigma
#' sigma sequence\strong{:}
#' vector of increasing positive values;
#' or \code{NULL} (default sequence)
#' 
#' @param nsigma
#' number of \code{sigma} values
#' 
Armin Rauschenberger's avatar
Armin Rauschenberger committed
56 57 58
#' @param ...
#' further arguments passed to \code{\link[glmnet]{glmnet}}
#' 
Armin Rauschenberger's avatar
Armin Rauschenberger committed
59
#' @details
Armin Rauschenberger's avatar
Armin Rauschenberger committed
60 61 62 63
#' - INCLUDE note on deviance (not comparable between lin and log models)
#' - alpha: elastic net parameter\strong{:}
#' numeric between \eqn{0} (ridge) and \eqn{1} (lasso)
#' - do not use "family"
Armin Rauschenberger's avatar
Armin Rauschenberger committed
64
#' 
Armin Rauschenberger's avatar
Armin Rauschenberger committed
65
#' @examples
Armin Rauschenberger's avatar
Armin Rauschenberger committed
66 67 68
#' n <- 100; p <- 200
#' y <- rnorm(n)
#' X <- matrix(rnorm(n*p),nrow=n,ncol=p)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
69
#' net <- cornet(y=y,cutoff=0,X=X)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
70
#' ### Add ... to all glmnet::glmnet calls !!! ###
Armin Rauschenberger's avatar
Armin Rauschenberger committed
71
cornet <- function(y,cutoff,X,alpha=1,npi=101,pi=NULL,nsigma=99,sigma=NULL,nfolds=10,foldid=NULL,type.measure="deviance",...){
Armin Rauschenberger's avatar
Armin Rauschenberger committed
72
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
73
  #--- temporary ---
Armin Rauschenberger's avatar
Armin Rauschenberger committed
74
  # cutoff <- 0; npi <- 101; pi <- NULL; nsigma <- 99; sigma <- NULL; nfolds <- 10;  foldid <- NULL; type.measure <- "deviance"; logistic <- TRUE
Armin Rauschenberger's avatar
Armin Rauschenberger committed
75
  test <- list()
Armin Rauschenberger's avatar
Armin Rauschenberger committed
76
  test$sigma <- test$pi <- FALSE
Armin Rauschenberger's avatar
Armin Rauschenberger committed
77
  test$grid <- TRUE
Armin Rauschenberger's avatar
Armin Rauschenberger committed
78
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
79
  #--- checks ---
Armin Rauschenberger's avatar
Armin Rauschenberger committed
80
  cornet:::.check(x=y,type="vector")
Armin Rauschenberger's avatar
Armin Rauschenberger committed
81
  if(all(y %in% c(0,1))){warning("Binary response.",call.=FALSE)}
Armin Rauschenberger's avatar
Armin Rauschenberger committed
82 83
  cornet:::.check(x=cutoff,type="scalar",min=min(y),max=max(y))
  cornet:::.check(x=X,type="matrix")
Armin Rauschenberger's avatar
Armin Rauschenberger committed
84
  cornet:::.check(x=alpha,type="scalar",min=0,max=1)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
85
  if(length(y)!=nrow(X)){stop("Contradictory sample size.",call.=FALSE)}
Armin Rauschenberger's avatar
Armin Rauschenberger committed
86 87 88 89 90 91 92
  cornet:::.check(x=npi,type="scalar",min=1)
  cornet:::.check(x=pi,type="vector",min=0,max=1,null=TRUE)
  cornet:::.check(x=nsigma,type="scalar",min=1)
  cornet:::.check(x=sigma,type="vector",min=.Machine$double.eps,null=TRUE)
  cornet:::.check(x=nfolds,type="scalar",min=3)
  cornet:::.check(x=foldid,type="vector",values=seq_len(nfolds),null=TRUE)
  cornet:::.check(x=type.measure,type="string",values=c("deviance","class","mse","mae")) # not auc (min/max confusion)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
93 94
  if(!is.null(list(...)$family)){stop("Reserved argument \"family\".",call.=FALSE)}
  n <- length(y)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
95
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
96
  # binarisation
Armin Rauschenberger's avatar
Armin Rauschenberger committed
97 98
  z <- 1*(y > cutoff)
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
99
  # fold identifiers
Armin Rauschenberger's avatar
Armin Rauschenberger committed
100 101 102 103
  if(is.null(foldid)){
    foldid <- palasso:::.folds(y=z,nfolds=nfolds)
  }
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
104
  #--- model fitting ---
Armin Rauschenberger's avatar
Armin Rauschenberger committed
105
  fit <- list()
Armin Rauschenberger's avatar
Armin Rauschenberger committed
106 107
  fit$gaussian <- glmnet::glmnet(y=y,x=X,family="gaussian",alpha=alpha)
  fit$binomial <- glmnet::glmnet(y=z,x=X,family="binomial",alpha=alpha)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
108 109
   
  #--- sigma sequence ---
Armin Rauschenberger's avatar
Armin Rauschenberger committed
110 111
  if(is.null(sigma)){
    fit$sigma <- exp(seq(from=log(0.05*stats::sd(y)),
Armin Rauschenberger's avatar
Armin Rauschenberger committed
112
                  to=log(10*stats::sd(y)),length.out=nsigma))
Armin Rauschenberger's avatar
Armin Rauschenberger committed
113 114
  } else {
    fit$sigma <- sigma
Armin Rauschenberger's avatar
Armin Rauschenberger committed
115
    nsigma <- length(sigma)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
116
  }
Armin Rauschenberger's avatar
Armin Rauschenberger committed
117
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
118 119
  #--- pi sequence ---
  if(is.null(pi)){
Armin Rauschenberger's avatar
Armin Rauschenberger committed
120
    fit$pi <- seq(from=0,to=1,length.out=npi)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
121 122 123
  } else {
    fit$pi <- pi
    npi <- length(pi)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
124 125
  }
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
126 127 128 129 130
  #--- tuning parameters ---
  lab.pi <- paste0("pi",seq_len(npi))
  lab.sigma <- paste0("si",seq_len(nsigma))
  names(fit$sigma) <- lab.sigma
  names(fit$pi) <- lab.pi
Armin Rauschenberger's avatar
Armin Rauschenberger committed
131
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
132
  #--- cross-validation ---
Armin Rauschenberger's avatar
Armin Rauschenberger committed
133
  pred <- list()
Armin Rauschenberger's avatar
Armin Rauschenberger committed
134 135 136
  pred$y <- matrix(data=NA,nrow=n,ncol=length(fit$gaussian$lambda))
  pred$z <- matrix(data=NA,nrow=n,ncol=length(fit$binomial$lambda))

Armin Rauschenberger's avatar
Armin Rauschenberger committed
137 138 139 140
  if(test$sigma){
    pred$sigma <- matrix(data=NA,nrow=n,ncol=nsigma)
  }
  if(test$pi){
Armin Rauschenberger's avatar
Armin Rauschenberger committed
141
    pred$pi <- matrix(data=NA,nrow=n,ncol=npi)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
142 143
  }
  if(test$grid){
Armin Rauschenberger's avatar
Armin Rauschenberger committed
144
    dimnames <- list(NULL,lab.sigma,lab.pi)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
145
    pred$grid <- array(data=NA,dim=c(n,nsigma,npi),dimnames=dimnames)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
146
  }
Armin Rauschenberger's avatar
Armin Rauschenberger committed
147

Armin Rauschenberger's avatar
Armin Rauschenberger committed
148
  for(k in seq_len(nfolds)){
Armin Rauschenberger's avatar
Armin Rauschenberger committed
149

Armin Rauschenberger's avatar
Armin Rauschenberger committed
150 151 152 153 154 155 156
    y0 <- y[foldid!=k]
    y1 <- y[foldid==k]
    z0 <- z[foldid!=k]
    z1 <- z[foldid==k]
    X0 <- X[foldid!=k,,drop=FALSE]
    X1 <- X[foldid==k,,drop=FALSE]
    
Armin Rauschenberger's avatar
Armin Rauschenberger committed
157
    # linear regression
Armin Rauschenberger's avatar
Armin Rauschenberger committed
158
    net <- glmnet::glmnet(y=y0,x=X0,family="gaussian",alpha=alpha)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
159 160
    temp_y <- stats::predict(object=net,newx=X1,type="response",s=fit$gaussian$lambda)
    pred$y[foldid==k,seq_len(ncol(temp_y))] <- temp_y
Armin Rauschenberger's avatar
Armin Rauschenberger committed
161
    cvm <- cornet:::.loss(y=y1,fit=temp_y,family="gaussian",type.measure="deviance")[[1]]
Armin Rauschenberger's avatar
Armin Rauschenberger committed
162
    y_hat <- temp_y[,which.min(cvm)]
Armin Rauschenberger's avatar
Armin Rauschenberger committed
163
    
Armin Rauschenberger's avatar
Armin Rauschenberger committed
164
    # logistic regression
Armin Rauschenberger's avatar
Armin Rauschenberger committed
165
    net <- glmnet::glmnet(y=z0,x=X0,family="binomial",alpha=alpha)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
166 167
    temp_z <- stats::predict(object=net,newx=X1,type="response",s=fit$binomial$lambda)
    pred$z[foldid==k,seq_len(ncol(temp_z))] <- temp_z
Armin Rauschenberger's avatar
Armin Rauschenberger committed
168
    cvm <- cornet:::.loss(y=z1,fit=temp_z,family="binomial",type.measure=type.measure)[[1]]
Armin Rauschenberger's avatar
Armin Rauschenberger committed
169 170
    z_hat <- temp_z[,which.min(cvm)]
    
Armin Rauschenberger's avatar
Armin Rauschenberger committed
171
    # fusion (sigma)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
172 173
    if(test$sigma){
      for(i in seq_along(fit$sigma)){
Armin Rauschenberger's avatar
Armin Rauschenberger committed
174
        #pred$sigma[foldid==k,i] <- stats::pnorm(q=y_hat,mean=cutoff,sd=fit$sigma[i])
Armin Rauschenberger's avatar
Armin Rauschenberger committed
175
      }
Armin Rauschenberger's avatar
Armin Rauschenberger committed
176
    }
Armin Rauschenberger's avatar
Armin Rauschenberger committed
177
    
Armin Rauschenberger's avatar
Armin Rauschenberger committed
178
    # fusion (pi)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
179 180
    if(test$pi){
      for(i in seq_along(fit$pi)){
Armin Rauschenberger's avatar
Armin Rauschenberger committed
181 182
        #cont <- stats::pnorm(q=y_hat,mean=cutoff,sd=stats::sd(y))
        #pred$pi[foldid==k,i] <- fit$pi[i]*cont + (1-fit$pi[i])*z_hat
Armin Rauschenberger's avatar
Armin Rauschenberger committed
183 184
      }
    }
Armin Rauschenberger's avatar
Armin Rauschenberger committed
185 186 187

    # fusion (grid)
    if(test$grid){
Armin Rauschenberger's avatar
Armin Rauschenberger committed
188 189 190
      for(i in seq_along(fit$sigma)){
        for(j in seq_along(fit$pi)){
          cont <- stats::pnorm(q=y_hat,mean=cutoff,sd=fit$sigma[i])
Armin Rauschenberger's avatar
Armin Rauschenberger committed
191
          pred$grid[foldid==k,i,j] <- fit$pi[j]*cont + (1-fit$pi[j])*z_hat
Armin Rauschenberger's avatar
Armin Rauschenberger committed
192 193 194
        }
      }
    }
Armin Rauschenberger's avatar
Armin Rauschenberger committed
195 196
  }
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
197 198
  #--- evaluation ---
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
199
  # deviance (not comparable between Gaussian and binomial families)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
200
  fit$gaussian$cvm <- cornet:::.loss(y=y,fit=pred$y,family="gaussian",type.measure="deviance")[[1]]
Armin Rauschenberger's avatar
Armin Rauschenberger committed
201
  fit$gaussian$lambda.min <- fit$gaussian$lambda[which.min(fit$gaussian$cvm)]
Armin Rauschenberger's avatar
Armin Rauschenberger committed
202
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
203
  fit$binomial$cvm <- cornet:::.loss(y=z,fit=pred$z,family="binomial",type.measure=type.measure)[[1]]
Armin Rauschenberger's avatar
Armin Rauschenberger committed
204
  fit$binomial$lambda.min <- fit$binomial$lambda[which.min(fit$binomial$cvm)]
Armin Rauschenberger's avatar
Armin Rauschenberger committed
205

Armin Rauschenberger's avatar
Armin Rauschenberger committed
206
  if(test$sigma){
Armin Rauschenberger's avatar
Armin Rauschenberger committed
207
    #fit$sigma.cvm <- cornet:::.loss(y=z,fit=pred$sigma,family="binomial",type.measure=type.measure)[[1]]
Armin Rauschenberger's avatar
Armin Rauschenberger committed
208
    #fit$sigma.min1 <- fit$sigma[which.min(fit$sigma.cvm)]
Armin Rauschenberger's avatar
Armin Rauschenberger committed
209 210 211
  }

  if(test$pi){
Armin Rauschenberger's avatar
Armin Rauschenberger committed
212
    #fit$pi.cvm <- cornet:::.loss(y=z,fit=pred$pi,family="binomial",type.measure=type.measure)[[1]] # trial
Armin Rauschenberger's avatar
Armin Rauschenberger committed
213
    #fit$pi.min1 <- fit$pi[which.min(fit$pi.cvm)]
Armin Rauschenberger's avatar
Armin Rauschenberger committed
214
  }
Armin Rauschenberger's avatar
Armin Rauschenberger committed
215

Armin Rauschenberger's avatar
Armin Rauschenberger committed
216
  if(test$grid){
Armin Rauschenberger's avatar
Armin Rauschenberger committed
217
    dimnames <- list(lab.sigma,lab.pi)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
218
    fit$cvm <- matrix(data=NA,nrow=nsigma,ncol=npi,dimnames=dimnames)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
219
    for(i in seq_len(nsigma)){
Armin Rauschenberger's avatar
Armin Rauschenberger committed
220
      for(j in seq_len(npi)){
Armin Rauschenberger's avatar
Armin Rauschenberger committed
221
        fit$cvm[i,j] <- cornet:::.loss(y=z,fit=pred$grid[,i,j],family="binomial",type.measure=type.measure)[[1]]
Armin Rauschenberger's avatar
Armin Rauschenberger committed
222 223
      }
    }
Armin Rauschenberger's avatar
Armin Rauschenberger committed
224
    temp <- which(fit$cvm==min(fit$cvm),arr.ind=TRUE,useNames=TRUE)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
225
    if(nrow(temp)>1){warning("MULTIPLE!",call.=FALSE);temp <- temp[1,,drop=FALSE]}
Armin Rauschenberger's avatar
Armin Rauschenberger committed
226 227 228
    fit$sigma.min <- fit$sigma[temp[1]]
    fit$pi.min <- fit$pi[temp[2]]
    if(fit$cvm[names(fit$sigma.min),names(fit$pi.min)]!=min(fit$cvm)){stop("Internal error.")}
Armin Rauschenberger's avatar
Armin Rauschenberger committed
229 230
  }
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
231
  #--- return ---
Armin Rauschenberger's avatar
Armin Rauschenberger committed
232
  fit$cutoff <- cutoff
Armin Rauschenberger's avatar
Armin Rauschenberger committed
233 234
  fit$info <- list(type.measure=type.measure,
                   sd.y=stats::sd(y),
Armin Rauschenberger's avatar
Armin Rauschenberger committed
235
                   table=table(z),
Armin Rauschenberger's avatar
Armin Rauschenberger committed
236
                   test=as.data.frame(test))
Armin Rauschenberger's avatar
Armin Rauschenberger committed
237

Armin Rauschenberger's avatar
Armin Rauschenberger committed
238
  class(fit) <- "cornet"
Armin Rauschenberger's avatar
Armin Rauschenberger committed
239 240 241
  return(fit)
}

Armin Rauschenberger's avatar
Armin Rauschenberger committed
242
#--- Methods -------------------------------------------------------------------
Armin Rauschenberger's avatar
Armin Rauschenberger committed
243

Armin Rauschenberger's avatar
Armin Rauschenberger committed
244 245
#' @export
#' @title
Armin Rauschenberger's avatar
Armin Rauschenberger committed
246
#' Extract estimated coefficients
Armin Rauschenberger's avatar
Armin Rauschenberger committed
247 248
#'
#' @description
Armin Rauschenberger's avatar
Armin Rauschenberger committed
249 250
#' Extracts estimated coefficients from linear and logistic regression,
#' under the penalty parameter that minimises the cross-validated loss.
Armin Rauschenberger's avatar
Armin Rauschenberger committed
251 252
#'
#' @param object
Armin Rauschenberger's avatar
Armin Rauschenberger committed
253
#' \link[cornet]{cornet} object
Armin Rauschenberger's avatar
Armin Rauschenberger committed
254 255
#' 
#' @param ...
Armin Rauschenberger's avatar
Armin Rauschenberger committed
256 257 258 259 260 261 262
#' further arguments (not applicable)
#' 
#' @return
#' This function returns a matrix with \eqn{n} rows and two columns,
#' where \eqn{n} is the sample size. It includes the estimated coefficients
#' from linear (first column, \code{"beta"})
#' and logistic (second column, \code{"gamma"}) regression.
Armin Rauschenberger's avatar
Armin Rauschenberger committed
263 264 265 266
#'
#' @examples
#' NA
#' 
Armin Rauschenberger's avatar
Armin Rauschenberger committed
267
coef.cornet <- function(object,...){
Armin Rauschenberger's avatar
Armin Rauschenberger committed
268
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
269
  if(length(list(...))!=0){warning("Ignoring arguments.")}
Armin Rauschenberger's avatar
Armin Rauschenberger committed
270
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
271 272 273 274 275
  s <- object$gaussian$lambda.min
  beta <- glmnet::coef.glmnet(object=object$gaussian,s=s)
  
  s <- object$binomial$lambda.min
  gamma <- glmnet::coef.glmnet(object=object$binomial,s=s)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
276 277 278 279 280 281
  
  coef <- cbind(beta,gamma)
  colnames(coef) <- c("beta","gamma")
  return(coef)
}

Armin Rauschenberger's avatar
Armin Rauschenberger committed
282 283 284

#' @export
#' @title
Armin Rauschenberger's avatar
Armin Rauschenberger committed
285
#' Plot loss matrix
Armin Rauschenberger's avatar
Armin Rauschenberger committed
286 287
#'
#' @description
Armin Rauschenberger's avatar
Armin Rauschenberger committed
288 289
#' Plots the loss for difference combinations of
#' the weight (pi) and scale (sigma) paramters.
Armin Rauschenberger's avatar
Armin Rauschenberger committed
290 291
#'
#' @param x
Armin Rauschenberger's avatar
Armin Rauschenberger committed
292
#' \link[cornet]{cornet} object
Armin Rauschenberger's avatar
Armin Rauschenberger committed
293 294
#' 
#' @param ...
Armin Rauschenberger's avatar
Armin Rauschenberger committed
295
#' further arguments (not applicable)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
296 297 298 299
#'
#' @examples
#' NA
#' 
Armin Rauschenberger's avatar
Armin Rauschenberger committed
300
plot.cornet <- function(x,...){
Armin Rauschenberger's avatar
Armin Rauschenberger committed
301
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
302
  if(length(list(...))!=0){warning("Ignoring arguments.")}
Armin Rauschenberger's avatar
Armin Rauschenberger committed
303

Armin Rauschenberger's avatar
Armin Rauschenberger committed
304
  k <- 100
Armin Rauschenberger's avatar
Armin Rauschenberger committed
305
  levels <- stats::quantile(x$cvm,probs=seq(from=0,to=1,length.out=k+1))
Armin Rauschenberger's avatar
Armin Rauschenberger committed
306 307
  col <- colorspace::diverge_hsv(n=k)
  nsigma <- length(x$sigma)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
308
  npi <- length(x$pi)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
309 310 311
  
  graphics::plot.new()
  graphics::par(xaxs="i",yaxs="i")
Armin Rauschenberger's avatar
Armin Rauschenberger committed
312
  graphics::plot.window(xlim=c(1-0.5,nsigma+0.5),ylim=c(1-0.5,npi+0.5))
Armin Rauschenberger's avatar
Armin Rauschenberger committed
313
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
314
  graphics::title(xlab=expression(sigma),ylab=expression(pi),cex.lab=1)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
315
  #graphics::.filled.contour(x=seq_along(x$sigma),y=seq_along(x$pi),z=x$cvm,levels=levels,col=col)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
316
  graphics::image(x=seq_along(x$sigma),y=seq_along(x$pi),z=x$cvm,breaks=levels,col=col,add=TRUE)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
317
  graphics::box()
Armin Rauschenberger's avatar
Armin Rauschenberger committed
318
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
319 320 321 322
  ssigma <- which(x$sigma %in% x$sigma.min)
  spi <- which(x$pi %in% x$pi.min)
  
  if(length(ssigma)==1 & length(spi)==1){
Armin Rauschenberger's avatar
Armin Rauschenberger committed
323
    # axes with labels for tuned parameters
Armin Rauschenberger's avatar
Armin Rauschenberger committed
324 325
    graphics::axis(side=1,at=c(1,ssigma,nsigma),labels=signif(x$sigma[c(1,ssigma,nsigma)],digits=2))
    graphics::axis(side=2,at=c(1,spi,npi),labels=signif(x$pi[c(1,spi,npi)],digits=2))
Armin Rauschenberger's avatar
Armin Rauschenberger committed
326
    # point for tuned parameters
Armin Rauschenberger's avatar
Armin Rauschenberger committed
327 328
    graphics::points(x=ssigma,y=spi,pch=4,col="black",cex=1)
  } else {
Armin Rauschenberger's avatar
Armin Rauschenberger committed
329
    # axes with standard labels
Armin Rauschenberger's avatar
Armin Rauschenberger committed
330 331 332 333
    at <- seq(from=1,to=nsigma,length.out=5)
    graphics::axis(side=1,at=at,labels=signif(x$sigma,digits=2)[at])
    at <- seq(from=1,to=nsigma,length.out=5)
    graphics::axis(side=2,at=at,labels=signif(x$pi,digits=2)[at])
Armin Rauschenberger's avatar
Armin Rauschenberger committed
334 335 336 337
    # points for selected parameters
    isigma <- sapply(x$sigma.min,function(y) which(x$sigma==y))
    ipi <- sapply(x$pi.min,function(y) which(x$pi==y))
    graphics::points(x=isigma,y=ipi,pch=4,col="black",cex=1)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
338 339
  }
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
340 341
}

Armin Rauschenberger's avatar
Armin Rauschenberger committed
342 343
#' @export
#' @title
Armin Rauschenberger's avatar
Armin Rauschenberger committed
344
#' Predict binary outcome
Armin Rauschenberger's avatar
Armin Rauschenberger committed
345 346
#'
#' @description
Armin Rauschenberger's avatar
Armin Rauschenberger committed
347 348 349 350 351 352 353 354
#' Predicts the binary outcome with linear, logistic, and combined regression.
#' 
#' @details
#' For linear regression, this function tentatively transforms
#' the predicted values to predicted probabilities,
#' using a Gaussian distribution with a fixed mean (threshold)
#' and a fixed variance (estimated variance of the numeric outcome).
#' 
Armin Rauschenberger's avatar
Armin Rauschenberger committed
355
#' @param object
Armin Rauschenberger's avatar
Armin Rauschenberger committed
356
#' \link[cornet]{cornet} object
Armin Rauschenberger's avatar
Armin Rauschenberger committed
357 358 359 360 361 362 363 364 365 366
#' 
#' @param newx
#' covariates\strong{:}
#' numeric matrix with \eqn{n} rows (samples)
#' and \eqn{p} columns (variables)
#' 
#' @param type
#' \code{"probability"}, \code{"odds"}, \code{"log-odds"}
#' 
#' @param ...
Armin Rauschenberger's avatar
Armin Rauschenberger committed
367
#' further arguments (not applicable)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
368 369 370 371
#' 
#' @examples
#' NA
#' 
Armin Rauschenberger's avatar
Armin Rauschenberger committed
372
predict.cornet <- function(object,newx,type="probability",...){
Armin Rauschenberger's avatar
Armin Rauschenberger committed
373
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
374
  if(length(list(...))!=0){warning("Ignoring arguments.")}
Armin Rauschenberger's avatar
Armin Rauschenberger committed
375 376
  
  x <- object; rm(object)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
377
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
378 379
  test <- x$info$test
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
380 381
  .check(x=newx,type="matrix")
  .check(x=type,type="string",values=c("probability","odds","log-odds"))
Armin Rauschenberger's avatar
Armin Rauschenberger committed
382
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
383 384 385 386 387 388 389
  # linear, logistic and mixed
  prob <- list()
  link <- as.numeric(stats::predict(object=x$gaussian,
                  newx=newx,s=x$gaussian$lambda.min,type="response"))
  prob$gaussian <- stats::pnorm(q=link,mean=x$cutoff,sd=x$info$sd.y)
  prob$binomial <- as.numeric(stats::predict(object=x$binomial,
                  newx=newx,s=x$binomial$lambda.min,type="response"))
Armin Rauschenberger's avatar
Armin Rauschenberger committed
390 391
  
  if(test$sigma){
Armin Rauschenberger's avatar
Armin Rauschenberger committed
392
    #prob$sigma <- stats::pnorm(q=link,mean=x$cutoff,sd=x$sigma.min)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
393 394 395
  }
  
  if(test$pi){
Armin Rauschenberger's avatar
Armin Rauschenberger committed
396
     #prob$pi <- x$pi.min*prob$gaussian + (1-x$pi.min)*prob$binomial
Armin Rauschenberger's avatar
Armin Rauschenberger committed
397 398 399
  }
 
  if(test$grid){
Armin Rauschenberger's avatar
Armin Rauschenberger committed
400
    cont <- stats::pnorm(q=link,mean=x$cutoff,sd=x$sigma.min)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
401
    prob$grid <- x$pi.min*cont + (1-x$pi.min)*prob$binomial
Armin Rauschenberger's avatar
Armin Rauschenberger committed
402 403
  }
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
404 405
  # consistency tests
  lapply(X=prob,FUN=function(p) .check(x=p,type="vector",min=0,max=1))
Armin Rauschenberger's avatar
Armin Rauschenberger committed
406
  .equal(link>x$cutoff,prob$gaussian>0.5)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
407 408 409 410 411 412 413 414 415 416

  # transformation
  if(type=="probability"){
    frame <- prob
  } else if(type=="odds"){
    frame <- lapply(X=prob,FUN=function(x) x/(1-x))
  } else if(type=="log-odds"){
    frame <- lapply(X=prob,FUN=function(x) log(x/(1-x)))
  } else {
    stop("Invalid type.",call.=FALSE)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
417 418
  }
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
419
  return(as.data.frame(frame))
Armin Rauschenberger's avatar
Armin Rauschenberger committed
420 421
}

Armin Rauschenberger's avatar
Armin Rauschenberger committed
422
#--- Application ---------------------------------------------------------------
Armin Rauschenberger's avatar
Armin Rauschenberger committed
423

Armin Rauschenberger's avatar
Armin Rauschenberger committed
424 425 426 427 428 429 430
#' @export
#' @title
#' Comparison
#'
#' @description
#' Compares models for a continuous response with a cutoff value
#'
Armin Rauschenberger's avatar
Armin Rauschenberger committed
431
#' @inheritParams  cornet
Armin Rauschenberger's avatar
Armin Rauschenberger committed
432
#' 
Armin Rauschenberger's avatar
Armin Rauschenberger committed
433 434 435
#' @examples
#' NA
#' 
Armin Rauschenberger's avatar
Armin Rauschenberger committed
436
.compare <- function(y,cutoff,X,alpha=1,nfolds=5,foldid=NULL,type.measure="deviance"){
Armin Rauschenberger's avatar
Armin Rauschenberger committed
437
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
438
  z <- 1*(y > cutoff)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
439 440 441 442 443
  if(is.null(foldid)){
    fold <- palasso:::.folds(y=z,nfolds=nfolds)
  } else {
    fold <- foldid
  }
Armin Rauschenberger's avatar
Armin Rauschenberger committed
444
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
445
  cols <- c("gaussian","binomial","grid")
Armin Rauschenberger's avatar
Armin Rauschenberger committed
446 447
  pred <- matrix(data=NA,nrow=length(y),ncol=length(cols),
                 dimnames=list(NULL,cols))
Armin Rauschenberger's avatar
Armin Rauschenberger committed
448 449
  
  select <- list()
Armin Rauschenberger's avatar
Armin Rauschenberger committed
450
  for(i in seq_len(nfolds)){
Armin Rauschenberger's avatar
Armin Rauschenberger committed
451
    fit <- cornet::cornet(y=y[fold!=i],cutoff=cutoff,X=X[fold!=i,],alpha=alpha,type.measure=type.measure)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
452 453
    tryCatch(expr=cornet:::plot.cornet(fit),error=function(x) NULL)
    temp <- cornet:::predict.cornet(fit,newx=X[fold==i,])
Armin Rauschenberger's avatar
Armin Rauschenberger committed
454
    if(any(temp<0|temp>1)){stop("Outside unit interval.",call.=FALSE)}
Armin Rauschenberger's avatar
Armin Rauschenberger committed
455 456 457 458
    model <- colnames(pred)
    for(j in seq_along(model)){
      pred[fold==i,model[j]] <- temp[[model[j]]]
    }
Armin Rauschenberger's avatar
Armin Rauschenberger committed
459 460
  }
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
461
  type <- c("deviance","class","mse","mae","auc")
Armin Rauschenberger's avatar
Armin Rauschenberger committed
462
  loss <- lapply(X=type,FUN=function(x) cornet:::.loss(y=z,fit=pred,family="binomial",type.measure=x,foldid=fold)[[1]])
Armin Rauschenberger's avatar
Armin Rauschenberger committed
463
  names(loss) <- type
Armin Rauschenberger's avatar
Armin Rauschenberger committed
464
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
465 466 467 468 469 470 471 472 473 474 475
  #if(trial){
  #  list <- list(diff=(pred-z)^2,fold=fold,loss=loss)
  #  return(list)
  #} else {
  #  return(loss)
  #}
  
  return(loss)

}

Armin Rauschenberger's avatar
Armin Rauschenberger committed
476

Armin Rauschenberger's avatar
Armin Rauschenberger committed
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
#' @export
#' @title
#' Testing
#'
#' @description
#' Compares models for a continuous response with a cutoff value (testing)
#'
#' @inheritParams cornet
#' 
#' @examples
#' NA
#' 
.test <- function(y,cutoff,X,alpha=1,type.measure="deviance"){
  
  z <- 1*(y > cutoff)
  fold <- palasso:::.folds(y=z,nfolds=5)
  fold <- ifelse(fold==1,1,0)
  
  fit <- cornet::cornet(y=y[fold==0],cutoff=cutoff,X=X[fold==0,],alpha=alpha)
  tryCatch(expr=cornet:::plot.cornet(fit),error=function(x) NULL)
  pred <- cornet:::predict.cornet(fit,newx=X[fold==1,])
  if(any(pred<0|pred>1)){stop("Outside unit interval.",call.=FALSE)}
  
  #res <- (pred-z[fold==1])^2 # MSE
  #pvalue <- wilcox.test(x=res[,"binomial"],y=res[,"grid"],paired=TRUE,alternative="greater")$p.value
  #colMeans(abs(pred-0.5)) # distance from 0.5
Armin Rauschenberger's avatar
Armin Rauschenberger committed
503
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
  limit <- 1e-05
  pred[pred < limit] <- limit
  pred[pred > 1 - limit] <- 1 - limit
  res <- -2 * (y[fold==1] * log(pred) + (1 - y[fold==1]) * log(1 - pred))
  pvalue <- stats::wilcox.test(x=res[,"binomial"],y=res[,"grid"],paired=TRUE,alternative="greater")$p.value
  
  return(pvalue)
}

# Simulates y and X.
.simulate <- function(n,p,prob=0.2,fac=1){
  beta <- stats::rnorm(n=p)
  cond <- stats::rbinom(n=p,size=1,prob=prob)
  beta[cond==0] <- 0
  X <- matrix(stats::rnorm(n=n*p),nrow=n,ncol=p)
  mean <- X %*% beta
  y <- stats::rnorm(n=n,mean=mean,sd=fac*stats::sd(mean))
  return(list(y=y,X=X))
Armin Rauschenberger's avatar
Armin Rauschenberger committed
522 523
}

Armin Rauschenberger's avatar
Armin Rauschenberger committed
524 525 526 527 528 529 530 531 532 533 534 535 536
#--- start trial ---
if(FALSE){
  n <- 1000
  y_hat <- runif(n)
  y <- y_hat > 0.9
  y <- rbinom(n=n,size=1,prob=0.5)
  foldid <- rep(1:10,length.out=n)
  .loss(y=y,fit=y_hat,family="binomial",type.measure="auc",foldid=foldid)
}
#--- end trial ---

#--- Internal functions --------------------------------------------------------

Armin Rauschenberger's avatar
Armin Rauschenberger committed
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
#' @title
#' Arguments
#'
#' @description
#' Verifies whether two or more arguments are identical.
#'
#' @param ...
#' scalars, vectors, or matrices of equal dimensions
#' 
#' @param na.rm
#' remove missing values\strong{:}
#' logical
#' 
#' @examples 
#' NA
#' 
Armin Rauschenberger's avatar
Armin Rauschenberger committed
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
.equal <- function(...,na.rm=FALSE){
  list <- list(...)
  cond <- vapply(X=list,
                 FUN=function(x) all(x==list[[1]],na.rm=na.rm),
                 FUN.VALUE=logical(1))
  if(any(!cond)){
    stop("Unequal elements.",call.=FALSE)
  }
  return(invisible(NULL))
}

#' @title
#' Arguments
#'
#' @description
#' Verifies whether an argument matches formal requirements.
#'
#' @param x
#' argument
#' 
#' @param type
#' character \code{"string"}, \code{"scalar"}, \code{"vector"}, \code{"matrix"}
#' 
#' @param miss
#' accept missing values\strong{:}
#' logical
#' 
#' @param min
#' lower limit\strong{:}
#' numeric
#' 
#' @param max
#' upper limit\strong{:}
#' numeric
#' 
#' @param values
#' only accept specific values\strong{:}
#' vector 
#' 
#' @param inf
#' accept infinite (\code{Inf} or \code{-Inf}) values\strong{:}
#' logical
#' 
#' @param null
#' accept \code{NULL}\strong{:}
#' logical
#'
#' @examples
#' NA
#' 
.check <- function(x,type,miss=FALSE,min=NULL,max=NULL,values=NULL,inf=FALSE,null=FALSE){
Armin Rauschenberger's avatar
Armin Rauschenberger committed
604
  name <- deparse(substitute(x))
Armin Rauschenberger's avatar
Armin Rauschenberger committed
605 606 607
  if(null && is.null(x)){
    return(invisible(NULL)) 
  }
Armin Rauschenberger's avatar
Armin Rauschenberger committed
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
  if(type=="string"){
    cond <- is.vector(x) & is.character(x) & length(x)==1
  } else if(type=="scalar"){
    cond <- is.vector(x) & is.numeric(x) & length(x)==1
  } else if(type=="vector"){
    cond <- is.vector(x) & is.numeric(x)
  } else if(type=="matrix"){
    cond <- is.matrix(x) & is.numeric(x)
  } else {
    warning("Unknown type.")
  }
  if(!cond){
    stop(paste0("Argument \"",name,"\" does not match formal requirements."),call.=FALSE)
  }
  if(!miss && any(is.na(x))){
    stop(paste0("Argument \"",name,"\" contains missing values."),call.=FALSE)
  }
  if(!is.null(min) && any(x<min)){
    stop(paste0("expecting ",name," >= ",min),call.=FALSE)
  }
  if(!is.null(max) && any(x>max)){
    stop(paste0("expecting ",name," <= ",max),call.=FALSE)
  }
  if(!is.null(values) && !(x %in% values)){
    stop(paste0("Argument \"",name,"\" contains invalid values."),call.=FALSE)
  }
Armin Rauschenberger's avatar
Armin Rauschenberger committed
634 635 636
  if(!inf && any(is.infinite(values))){
    stop(paste0("Argument \"",name,"\ contains infinite values."),call.=FALSE)
  }
Armin Rauschenberger's avatar
Armin Rauschenberger committed
637 638 639
  return(invisible(NULL))
}

Armin Rauschenberger's avatar
Armin Rauschenberger committed
640 641 642



Armin Rauschenberger's avatar
Armin Rauschenberger committed
643 644
# Correct this function in the palasso package (search twice for "# typo").
.loss <- function (y,fit,family,type.measure,foldid=NULL){
Armin Rauschenberger's avatar
Armin Rauschenberger committed
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
  if (!is.list(fit)) {
    fit <- list(fit)
  }
  loss <- list()
  for (i in seq_along(fit)) {
    if (is.vector(fit[[i]])) {
      fit[[i]] <- as.matrix(fit[[i]])
    }
    if (is.null(foldid) & (family == "cox" | type.measure == 
                           "auc")) {
      stop("Missing foldid.", call. = FALSE)
    }
    if (family == "gaussian") {
      if (type.measure %in% c("deviance", "mse")) {
        loss[[i]] <- apply(X = fit[[i]], MARGIN = 2, 
                           FUN = function(x) mean((x - y)^2))
      }
      else if (type.measure == "mae") {
        loss[[i]] <- apply(X = fit[[i]], MARGIN = 2, 
                           FUN = function(x) mean(abs(x - y)))
      }
      else {
        stop("Invalid type measure.", call. = FALSE)
      }
    }
    else if (family == "binomial") {
      if (type.measure == "deviance") {
        limit <- 1e-05
        fit[[i]][fit[[i]] < limit] <- limit
        fit[[i]][fit[[i]] > 1 - limit] <- 1 - limit
        loss[[i]] <- apply(X = fit[[i]], MARGIN = 2, 
                           FUN = function(x) mean(-2 * (y * log(x) + (1 - 
                                                                        y) * log(1 - x))))
      }
      else if (type.measure == "mse") {
        loss[[i]] <- apply(X = fit[[i]], MARGIN = 2, 
                           FUN = function(x) 2 * mean((x - y)^2))
      }
      else if (type.measure == "mae") {
        loss[[i]] <- apply(X = fit[[i]], MARGIN = 2, 
                           FUN = function(x) 2 * mean(abs(x - y)))
      }
      else if (type.measure == "class") {
        loss[[i]] <- apply(X = fit[[i]], MARGIN = 2, 
                           FUN = function(x) mean(abs(round(x) - y)))
      }
      else if (type.measure == "auc") {
        weights <- table(foldid)
        cvraw <- matrix(data = NA, nrow = length(weights), 
                        ncol = ncol(fit[[i]])) # typo in palasso package !
        for (k in seq_along(weights)) {
          cvraw[k, ] <- apply(X = fit[[i]], MARGIN = 2, 
                              FUN = function(x) glmnet::auc(y = y[foldid == 
                                                                    k], prob = x[foldid == k]))
        }
        loss[[i]] <- apply(X = cvraw, MARGIN = 2, FUN = function(x) stats::weighted.mean(x = x, 
                                                                                         w = weights, na.rm = TRUE))
Armin Rauschenberger's avatar
Armin Rauschenberger committed
702
        names(loss[[i]]) <- colnames(fit[[i]]) # typo in palasso package!
Armin Rauschenberger's avatar
Armin Rauschenberger committed
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
      }
      else {
        stop("Invalid type measure.", call. = FALSE)
      }
    }
    else if (family == "poisson") {
      if (type.measure == "deviance") {
        loss[[i]] <- apply(X = fit[[i]], MARGIN = 2, 
                           FUN = function(x) mean(2 * (ifelse(y == 0, 
                                                              0, y * log(y/x)) - y + x), na.rm = TRUE))
      }
      else if (type.measure == "mse") {
        loss[[i]] <- apply(X = fit[[i]], MARGIN = 2, 
                           FUN = function(x) mean((x - y)^2))
      }
      else if (type.measure == "mae") {
        loss[[i]] <- apply(X = fit[[i]], MARGIN = 2, 
                           FUN = function(x) mean(abs(x - y)))
      }
      else {
        stop("Invalid type measure.", call. = FALSE)
      }
    }
    else if (family == "cox") {
      if (type.measure == "deviance") {
        weights <- tapply(X = y[, "status"], INDEX = foldid, 
                          FUN = sum)
        loss[[i]] <- apply(X = fit[[i]], MARGIN = 2, 
                           FUN = function(x) stats::weighted.mean(x = x/weights, 
                                                                  w = weights, na.rm = TRUE))
      }
      else {
        stop("Invalid type measure.", call. = FALSE)
      }
    }
    else {
      stop("Invalid family.", call. = FALSE)
    }
    if (sum(diff(is.na(loss[[i]]))) == 1) {
      loss[[i]] <- loss[[i]][!is.na(loss[[i]])]
    }
  }
  return(loss)
}

Armin Rauschenberger's avatar
Armin Rauschenberger committed
748 749
#--- Lost and found ------------------------------------------------------------

Armin Rauschenberger's avatar
Armin Rauschenberger committed
750
# calibrate (for cornet)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
751 752 753
#if(test$calibrate){
#  fit$calibrate <- CalibratR::calibrate(actual=z,predicted=pred$y[,which.min(fit$gaussian$cvm)],nCores=1,model_idx=5)$calibration_models
#}
Armin Rauschenberger's avatar
Armin Rauschenberger committed
754
# calibrate (for predict.cornet)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
#if(test$calibrate){
#  prob$calibrate <- CalibratR::predict_calibratR(calibration_models=x$calibrate,new=link,nCores=1)$GUESS_2
#}

.args <- function(...){
  args <- list(...)
  names <- names(formals(glmnet::glmnet))
  if(!is.null(args$family)){
    warning("Unexpected argument \"family\".",call.=FALSE) 
  }
  if(any(!names(args) %in% names)){
    stop("Unexpected argument.",call.=FALSE)
  }
  if(is.null(args$alpha)) {
    args$alpha <- 1
  }
  if(is.null(args$nlambda)){
    args$nlambda <- 100
  }
  if(is.null(args$lambda)){
    if(is.null(args$nlambda)){
      args$nlambda <- 100
    }
  } else {
    args$nlambda <- length(args$lambda)
  }
  return(args)
}




Armin Rauschenberger's avatar
Armin Rauschenberger committed
787