functions.R 31.8 KB
Newer Older
Rauschenberger's avatar
Rauschenberger committed
1

Rauschenberger's avatar
Rauschenberger committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

#' @name spliceQTL-package
#' @md
#' @aliases spliceQTL
#' 
#' @title
#' 
#' Alternative Splicing
#' 
#' @description
#' 
#' This R package includes various functions
#' for applying the global test of alternative splicing.
#' Some functions only work on the virtual machine (see below).
#' 
#' @seealso 
#' 
#' Prepare BBMRI and Geuvadis data:
#' * \code{\link{get.snps.geuvadis}} (not VM)
#' * \code{\link{get.snps.bbmri}} (only VM)
#' * \code{\link{get.exons.geuvadis}} (only VM)
#' * \code{\link{get.exons.bbmri}} (only VM)
#' 
#' Process samples and covariates:
#' * \code{\link{match.samples}}
#' * \code{\link{adjust.samples}}
#' * \code{\link{adjust.covariates}}
#' 
#' Search for exons and SNPs:
#' * \code{\link{map.genes}}
#' * \code{\link{map.exons}}
#' * \code{\link{map.snps}}
#' * \code{\link{drop.trivial}}
#' 
#' Test for alternative splicing:
#' * \code{\link{test.single}}
#' * \code{\link{test.multiple}}
#'
#' @keywords documentation
#' @docType package
#' 
NULL


Rauschenberger's avatar
Rauschenberger committed
46
47
48
49
50
51
52
53
54
55
#' @export
#' @title
#' Get SNP data (Geuvadis)
#' 
#' @description
#' This function transforms SNP data (local machine).
#' 
#' @param chr
#' chromosome: integer \eqn{1-22}
#' 
Rauschenberger's avatar
Rauschenberger committed
56
#' @param data
Rauschenberger's avatar
Rauschenberger committed
57
58
#' local directory for VCF (variant call format) and SDRF (sample and data relationship format) files
#' 
Rauschenberger's avatar
Rauschenberger committed
59
60
61
#' @param path
#' local directory for output
#' 
Rauschenberger's avatar
Rauschenberger committed
62
63
64
#' @examples
#' path <- "C:/Users/a.rauschenbe/Desktop/spliceQTL/data"
#' 
Rauschenberger's avatar
Rauschenberger committed
65
get.snps.geuvadis <- function(chr,data=NULL,path=getwd()){
Rauschenberger's avatar
Rauschenberger committed
66
    
Rauschenberger's avatar
Rauschenberger committed
67
68
69
70
71
72
73
74
75
76
77
78
    if(is.null(data)){
        data <- path
        # download SNP data
        file <- paste0("GEUVADIS.chr",chr,".PH1PH2_465.IMPFRQFILT_BIALLELIC_PH.annotv2.genotypes.vcf.gz")
        url <- paste0("http://www.ebi.ac.uk/arrayexpress/files/E-GEUV-1/genotypes/",file)
        destfile <- file.path(data,file)
        if(!file.exists(destfile)){
            utils::download.file(url=url,destfile=destfile,method="auto")
        }
        # transform with PLINK
        setwd(data)
        system(paste0("plink --vcf GEUVADIS.chr",chr,".PH1PH2_465.IMPFRQFILT_BIALLELIC_PH.annotv2.genotypes.vcf.gz",
Rauschenberger's avatar
Rauschenberger committed
79
                  " --maf 0.05 --geno 0 --make-bed --out snps",chr),invisible=FALSE)
Rauschenberger's avatar
Rauschenberger committed
80
81
82
83
84
85
86
87
        # obtain identifiers
        file <- "E-GEUV-1.sdrf.txt"
        url <- paste("http://www.ebi.ac.uk/arrayexpress/files/E-GEUV-1/",file,sep="")
        destfile <- file.path(data,file)
        if(!file.exists(destfile)){
            utils::download.file(url=url,destfile=destfile,method="auto")
        }
    }
Rauschenberger's avatar
Rauschenberger committed
88
89
    
    # read into R
Rauschenberger's avatar
Rauschenberger committed
90
91
92
    bed <- file.path(data,paste("snps",chr,".bed",sep=""))
    bim <- file.path(data,paste("snps",chr,".bim",sep=""))
    fam <- file.path(data,paste("snps",chr,".fam",sep=""))
Rauschenberger's avatar
Rauschenberger committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
    X <- snpStats::read.plink(bed=bed,bim=bim,fam=fam)
    X$fam <- NULL; all(diff(X$map$position) > 0)
    
    # fitler MAF
    maf <- snpStats::col.summary(X$genotypes)$MAF
    cond <- maf >= 0.05
    X$genotypes <- X$genotypes[,cond]
    X$map <- X$map[cond,]
    
    # format
    colnames(X$genotypes) <- paste0(X$map$chromosome,":",X$map$position)
    snps <- methods::as(object=X$genotypes,Class="numeric")
    class(snps) <- "integer"
    
    # change identifiers
Rauschenberger's avatar
Rauschenberger committed
108
    samples <- utils::read.delim(file=file.path(data,"E-GEUV-1.sdrf.txt"))
Rauschenberger's avatar
Rauschenberger committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
    match <- match(rownames(snps),samples$Source.Name)
    rownames(snps) <- samples$Comment.ENA_RUN.[match]
    snps <- snps[!is.na(rownames(snps)),]
    
    save(object=snps,file=file.path(path,paste0("Geuvadis.chr",chr,".RData")))
}


#' @export
#' @title
#' Get SNP data (BBMRI)
#' 
#' @description
#' This function transforms SNP data (virtual machine).
#' 
#' @param chr
#' chromosome: integer \eqn{1-22}
#' 
#' @param biobank
#' character "CODAM", "LL", "LLS", "NTR", "PAN", "RS", or NULL (all)
#' 
#' @param path
#' data directory
#' 
Rauschenberger's avatar
Rauschenberger committed
133
#' @param size
Rauschenberger's avatar
Rauschenberger committed
134
135
#' maximum number of SNPs to read in at once;
#' trade-off between memory usage (low) and speed (high)
Rauschenberger's avatar
Rauschenberger committed
136
#' 
Rauschenberger's avatar
Rauschenberger committed
137
138
139
#' @examples
#' path <- "/virdir/Scratch/arauschenberger/trial"
#'
Rauschenberger's avatar
Rauschenberger committed
140
get.snps.bbmri <- function(chr,biobank=NULL,path=getwd(),size=500*10^3){
Rauschenberger's avatar
Rauschenberger committed
141
142
143
144
145
146
147
148
149
150
151
152

    start <- Sys.time()
    message(rep("-",times=20)," chromosome ",chr," ",rep("-",times=20))
    
    p <- 5*10^6 # (maximum number of SNPs per chromosome, before filtering)
    skip <- seq(from=0,to=p,by=size)
    if(is.null(biobank)){
        study <- c("CODAM","LL","LLS0","LLS1","NTR0","NTR1","PAN","RS")
    } else if(biobank=="LLS"){
        study <- c("LLS0","LLS1")
    } else if(biobank=="NTR"){
        study <- c("NTR0","NTR1")
Rauschenberger's avatar
Rauschenberger committed
153
    } else if(biobank %in% c("CODAM","LL","PAN","RS")){
Rauschenberger's avatar
Rauschenberger committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
        study <- biobank
    } else{
        stop("Invalid biobank.",call.=FALSE)
    }
    collect <- matrix(list(),nrow=length(skip),ncol=length(study))
    colnames(collect) <- study
    
    for(i in seq_along(skip)){
        message("\n","chunk ",i,": ",appendLF=FALSE)
        for(j in seq_along(study)){
            message(study[j],"  ",appendLF=FALSE)
            
            # Locating files on virtual machine.
            dir <- study[j]
            if(study[j]=="LLS0"){dir <- "LLS/660Q"}
            if(study[j]=="LLS1"){dir <- "LLS/OmniExpr"}
            if(study[j]=="NTR0"){dir <- "NTR/Affy6"}
            if(study[j]=="NTR1"){dir <- "NTR/GoNL"}
            path0 <- file.path("/mnt/virdir/Backup/RP3_data/HRCv1.1_Imputation",dir)
Rauschenberger's avatar
Rauschenberger committed
173
            path1 <- path
Rauschenberger's avatar
Rauschenberger committed
174
175
176
177
178
            file0 <- paste0("chr",chr,".dose.vcf.gz")
            file1 <- paste0(study[j],".chr",chr,".dose.vcf.gz")
            file2 <- paste0(study[j],".chr",chr,".dose.vcf")
            
            # Decompressing missing files in personal folder.
Rauschenberger's avatar
Rauschenberger committed
179
180
181
182
            #if(!file.exists(file.path(path1,file2))){
            #    file.copy(from=file.path(path0,file0),to=file.path(path1,file1))
            #    R.utils::gunzip(filename=file.path(path1,file1),remove=TRUE,overwrite=TRUE)
            #}
Rauschenberger's avatar
Rauschenberger committed
183
184
            
            # Reading in files.
Rauschenberger's avatar
Rauschenberger committed
185
186
            #vcf <- vcfR::read.vcfR(file=file.path(path1,file2),skip=skip[i],nrows=size,verbose=FALSE)
            vcf <- vcfR::read.vcfR(file=file.path(path0,file0),skip=skip[i],nrows=size,verbose=FALSE)
Rauschenberger's avatar
Rauschenberger committed
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
            vcf <- vcf[vcf@fix[,"CHROM"]!="",] # bug fix
            vcf@fix[,"ID"] <- paste0(vcf@fix[,"ID"],"_",seq_len(dim(vcf)["variants"]))
            collect[i,j][[1]] <- vcf
            stop <- dim(vcf)["variants"]==0
            final <- dim(vcf)["variants"]<size
            if(stop){break}
        }
        print(utils::object.size(collect),units="Gb")
        end <- Sys.time()
        if(stop){break}
        
        # Calculating minor allele frequency.
        num <- numeric(); maf <- list()
        for(j in seq_along(study)){
            num[j] <- dim(collect[i,j][[1]])["gt_cols"] # replace by adjusted sample sizes?
            maf[[j]] <- num[j]*vcfR::maf(collect[i,j][[1]])[,"Frequency"]
        }
        cond <- rowSums(do.call(what="cbind",args=maf))/sum(num)>0.05
        if(sum(cond)==0){if(final){break}else{next}}
        
        # Filtering out genotypes.
        for(j in seq_along(study)){
            gt <- vcfR::extract.gt(collect[i,j][[1]][cond,])
            gt[gt=="0|0"] <- 0
            gt[gt=="0|1"|gt=="1|0"] <- 1
            gt[gt=="1|1"] <- 2
            storage.mode(gt) <- "integer"
            collect[i,j][[1]] <- gt
        }
        
        if(final){break}
    }
    
    # Removing empty rows.
    cond <- apply(collect,1,function(x) all(sapply(x,length)==0))
    collect <- collect[!cond,,drop=FALSE]
Rauschenberger's avatar
Rauschenberger committed
223
    #save(object=collect,file=file.path(path1,paste0("temp.chr",chr,".RData")))
Rauschenberger's avatar
Rauschenberger committed
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
    #load(file.path(path1,paste0("temp.chr",chr,".RData")))
    
    # Fusing all matrices.
    snps <- NULL
    for(i in seq_len(nrow(collect))){
        inner <- NULL
        for(j in seq_len(ncol(collect))){
            add <- collect[i,j][[1]]
            colnames(add) <- paste0(colnames(collect)[j],":",colnames(add))
            inner <- cbind(inner,add)
        }
        snps <- rbind(snps,inner)
    }
    attributes(snps)$time <- end-start
    rownames(snps) <- sapply(strsplit(x=rownames(snps),split="_"),function(x) x[[1]])
    snps <- t(snps)
    
    # Filter samples.
    rownames(snps) <- sub(x=rownames(snps),pattern="LLS0|LLS1",replacement="LLS")
    rownames(snps) <- sub(x=rownames(snps),pattern="NTR0|NTR1",replacement="NTR")
Rauschenberger's avatar
Rauschenberger committed
244

Rauschenberger's avatar
Rauschenberger committed
245
246
247
248
249
    if(is.null(biobank)){
        save(object=snps,file=file.path(path1,paste0("BBMRI.chr",chr,".RData")))
    } else {
        save(object=snps,file=file.path(path1,paste0(biobank,".chr",chr,".RData")))
    }
Rauschenberger's avatar
Rauschenberger committed
250
251
    
    # Remove temporary files.
Rauschenberger's avatar
Rauschenberger committed
252
253
254
    #for(j in seq_along(study)){
    #    file.remove(file.path(path1,paste0(study[j],".chr",chr,".dose.vcf")))
    #}
Rauschenberger's avatar
Rauschenberger committed
255
    
Rauschenberger's avatar
Rauschenberger committed
256
257
258
}


Rauschenberger's avatar
Rauschenberger committed
259
260


Rauschenberger's avatar
Rauschenberger committed
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
#' @export
#' @title
#' Get exon data (Geuvadis)
#' 
#' @description
#' This function transforms exon data (virtual machine).
#' 
#' @param path
#' data directory 
#' 
#' @examples
#' path <- "/virdir/Scratch/arauschenberger/trial"
#' 
get.exons.geuvadis <- function(path=getwd()){

    nrows <- 303544
    file <-"/virdir/Scratch/rmenezes/data_counts.txt"
    exons <- utils::read.table(file=file,header=TRUE,nrows=nrows)
    exons <- exons[exons[,"chr"] %in% 1:22,] # autosomes
    rownames(exons) <- exon_id <- paste0(exons[,"chr"],"_",exons[,"start"],"_",exons[,"end"])
    gene_id <- as.character(exons[,4])
    exons <- t(exons[,-c(1:4)])

    save(list=c("exons","exon_id","gene_id"),file=file.path(path,"Geuvadis.exons.RData"))
}


#' @export
#' @title
#' Get exon data (BBMRI)
#' 
#' @description
#' This function transforms exon data (virtual machine).
#' 
#' @param path
#' data directory 
#' 
#' @examples
#' path <- "/virdir/Scratch/arauschenberger/trial"
#' 
get.exons.bbmri <- function(path=getwd()){
    
    # sample identifiers:
    # (1) loading quality controlled gene expression data 
    # (2) extracting sample identifiers
    # (3) removing identifiers without SNP data
    # (4) translating identifiers
    utils::data(rnaSeqData_ReadCounts_BIOS_cleaned,package="BBMRIomics") # (1)
Rauschenberger's avatar
Rauschenberger committed
309
310
    cd <- SummarizedExperiment::colData(counts)[,c("biobank_id","imputation_id","run_id")] # (2)
    counts <- NULL
Rauschenberger's avatar
Rauschenberger committed
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
    names(cd) <- substr(names(cd),start=1,stop=3) # abbreviate names
    cd <- cd[!is.na(cd$imp),] # (3)
    cd$id <- NA # (4)
    cd$id[cd$bio=="CODAM"] <- sapply(strsplit(x=cd$imp[cd$bio=="CODAM"],split="_"),function(x) x[[2]])
    cd$id[cd$bio=="LL"] <- sub(pattern="1_LLDeep_",replacement="",x=cd$imp[cd$bio=="LL"])
    cd$id[cd$bio=="LLS"] <- sapply(strsplit(x=cd$imp[cd$bio=="LLS"],split="_"),function(x) x[[2]])
    cd$id[cd$bio=="NTR"] <- sapply(strsplit(x=cd$imp[cd$bio=="NTR"],split="_"),function(x) x[[2]])
    cd$id[cd$bio=="PAN"] <- cd$imp[cd$bio=="PAN"]
    cd$id[cd$bio=="RS"] <- sub(pattern="RS1_|RS2_|RS3_",replacement="",x=cd$imp[cd$bio=="RS"])
    
    # Identify individual not with "id" but with "bio:id".
    any(duplicated(cd$id)) # TRUE
    sapply(unique(cd$bio),function(x) any(duplicated(cd$id[x]))) # FALSE
    
    # exon data:
    # (1) loading exon expression data
    # (2) extracting sample identifiers
    # (3) retaining autosomes
    # (4) retaining samples from above
    load("/virdir/Backup/RP3_data/RNASeq/v2.1.3/exon_base/exon_base_counts.RData") # (1)
    colnames(counts) <- sub(pattern=".exon.base.count.gz",replacement="",x=colnames(counts)) # (2)
    autosomes <- sapply(strsplit(x=rownames(counts),split="_"),function(x) x[[1]] %in% 1:22) # (3)
    exons <- counts[autosomes,cd$run] # (3) and (4)
    exon_id <- exon_id[autosomes] # (3)
    gene_id <- gene_id[autosomes] # (3)
    colnames(exons) <- paste0(cd$bio,":",cd$id)
    exons <- t(exons)
    
    save(list=c("exons","exon_id","gene_id"),file=file.path(path,"BBMRI.exons.RData"))
}


Rauschenberger's avatar
Rauschenberger committed
343
344
345
346
347
#' @export
#' @title
#' Prepare data matrices
#' 
#' @description
Rauschenberger's avatar
Rauschenberger committed
348
349
#' This function removes duplicate samples from each matrix,
#' only retains samples appearing in all matrices,
Rauschenberger's avatar
Rauschenberger committed
350
#' and brings samples into the same order.
Rauschenberger's avatar
Rauschenberger committed
351
#' 
Rauschenberger's avatar
Rauschenberger committed
352
#' @param ...
Rauschenberger's avatar
Rauschenberger committed
353
354
#' matrices with samples in the rows and variables in the columns,
#' with sample identifiers as rows names
Rauschenberger's avatar
Rauschenberger committed
355
#' 
Rauschenberger's avatar
Rauschenberger committed
356
357
#' @param message
#' display messages\strong{:} logical
Rauschenberger's avatar
Rauschenberger committed
358
359
#' 
#' @examples
Rauschenberger's avatar
Rauschenberger committed
360
361
362
#' X <- matrix(rnorm(6),nrow=3,ncol=2,dimnames=list(c("A","B","C")))
#' Z <- matrix(rnorm(9),nrow=3,ncol=3,dimnames=list(c("B","A","B")))
#' match.samples(X,Z)
Rauschenberger's avatar
Rauschenberger committed
363
#' 
Rauschenberger's avatar
Rauschenberger committed
364
match.samples <- function(...,message=TRUE){
Rauschenberger's avatar
Rauschenberger committed
365
    
Rauschenberger's avatar
Rauschenberger committed
366
367
    list <- list(...)
    if(length(list)==1 & is.list(list[[1]])){list <- list[[1]]}
Rauschenberger's avatar
Rauschenberger committed
368
369
370
371
372
    if(is.null(names(list))){
        names(list) <- sapply(substitute(list(...))[-1],deparse)
    }
    names <- names(list)
    
Rauschenberger's avatar
Rauschenberger committed
373
    # check input
Rauschenberger's avatar
Rauschenberger committed
374
375
376
    cond <- sapply(list,function(x) !is.matrix(x))
    if(any(cond)){
        stop("Provide matrices!",call.=FALSE)
Rauschenberger's avatar
Rauschenberger committed
377
    }
Rauschenberger's avatar
Rauschenberger committed
378
379
380
    cond <- sapply(list,function(x) is.null(rownames(x)))
    if(any(cond)){
        stop("Provide row names!",call.=FALSE)
Rauschenberger's avatar
Rauschenberger committed
381
382
    }
    
Rauschenberger's avatar
Rauschenberger committed
383
    # remove duplicated samples
Rauschenberger's avatar
Rauschenberger committed
384
    duplic <- lapply(list,function(x) duplicated(rownames(x)))
Rauschenberger's avatar
Rauschenberger committed
385
    for(i in seq_along(list)){
Rauschenberger's avatar
Rauschenberger committed
386
387
388
        number <- round(100*mean(duplic[[i]]))
        if(message){message(number," duplicates in \"",names[i],"\"")}
        list[[i]] <- list[[i]][!duplic[[i]],,drop=FALSE]
Rauschenberger's avatar
Rauschenberger committed
389
    }
Rauschenberger's avatar
Rauschenberger committed
390
391
    
    # retain overlapping samples
Rauschenberger's avatar
Rauschenberger committed
392
393
394
    all <- Reduce(f=intersect,x=lapply(list,rownames))
    for(i in seq_along(list)){
        percent <- round(100*mean(rownames(list[[i]]) %in% all))
Rauschenberger's avatar
Rauschenberger committed
395
        if(message){message(percent,"% overlap in \"",names[i],"\"")}
Rauschenberger's avatar
Rauschenberger committed
396
        list[[i]] <- list[[i]][all,,drop=FALSE]
Rauschenberger's avatar
Rauschenberger committed
397
    }
Rauschenberger's avatar
Rauschenberger committed
398
399
    
    # check output
Rauschenberger's avatar
Rauschenberger committed
400
401
    cond <- sapply(list,function(x) any(duplicated(rownames(x))))
    if(any(cond)){
Rauschenberger's avatar
Rauschenberger committed
402
403
        stop("Duplicate samples!",call.=FALSE)
    }
Rauschenberger's avatar
Rauschenberger committed
404
405
    cond <- sapply(list,function(x) nrow(x)!=nrow(list[[1]]))
    if(any(cond)){
Rauschenberger's avatar
Rauschenberger committed
406
407
        stop("Different sample sizes!",call.=FALSE)
    }
Rauschenberger's avatar
Rauschenberger committed
408
409
    cond <- sapply(list,function(x) any(rownames(x)!=rownames(list[[1]])))
    if(any(cond)){
Rauschenberger's avatar
Rauschenberger committed
410
411
412
        stop("Different sample names!",call.=FALSE)
    }
    
Rauschenberger's avatar
Rauschenberger committed
413
    return(list)
Rauschenberger's avatar
Rauschenberger committed
414
415
416
417
418
419
420
}

#' @export
#' @title
#' Adjust library sizes
#' 
#' @description
Rauschenberger's avatar
Rauschenberger committed
421
#' This function adjusts RNA-seq expression data for different library sizes.
Rauschenberger's avatar
Rauschenberger committed
422
#' 
Rauschenberger's avatar
Rauschenberger committed
423
424
#' @param x
#' matrix with \eqn{n} rows (samples) and \eqn{p} columns (variables)
Rauschenberger's avatar
Rauschenberger committed
425
426
#' 
#' @examples
Rauschenberger's avatar
Rauschenberger committed
427
428
429
430
#' n <- 5; p <- 10
#' x <- matrix(rnbinom(n=n*p,mu=5,size=1/0.5),nrow=n,ncol=p)
#' x[1,] <- 10*x[1,]
#' adjust.samples(x)
Rauschenberger's avatar
Rauschenberger committed
431
#' 
Rauschenberger's avatar
Rauschenberger committed
432
adjust.samples <- function(x){
Rauschenberger's avatar
Rauschenberger committed
433
434
435
436
437
438
    if(!is.matrix(x)){
        stop("no matrix argument",call.=FALSE)
    }
    if(!is.numeric(x)){
        stop("no numeric argument",call.=FALSE)
    }
Rauschenberger's avatar
Rauschenberger committed
439
    if(!is.integer(x)&&any(round(x)!=x)){
Rauschenberger's avatar
Rauschenberger committed
440
        warning("non-integer values",call.=FALSE)
Rauschenberger's avatar
Rauschenberger committed
441
    }
Rauschenberger's avatar
Rauschenberger committed
442
    if(any(x<0)){
Rauschenberger's avatar
Rauschenberger committed
443
        warning("negative values",call.=FALSE)
Rauschenberger's avatar
Rauschenberger committed
444
    }
Rauschenberger's avatar
Rauschenberger committed
445
446
447
    n <- nrow(x); p <- ncol(x)
    lib.size <- rowSums(x)
    norm.factors <- edgeR::calcNormFactors(object=t(x),lib.size=lib.size)
Rauschenberger's avatar
Rauschenberger committed
448
    gamma <- norm.factors*lib.size/mean(lib.size)
Rauschenberger's avatar
Rauschenberger committed
449
    gamma <- matrix(gamma,nrow=n,ncol=p,byrow=FALSE)
Rauschenberger's avatar
Rauschenberger committed
450
451
    x <- x/gamma
    return(x)
Rauschenberger's avatar
Rauschenberger committed
452
453
454
455
456
457
458
459
460
}

#' @export
#' @title
#' Adjust exon length
#' 
#' @description
#' This function adjusts exon expression data for different exon lengths.
#' 
Rauschenberger's avatar
Rauschenberger committed
461
#' @param x
Rauschenberger's avatar
Rauschenberger committed
462
463
#' matrix with \eqn{n} rows (samples) and \eqn{p} columns (exons)
#' 
Rauschenberger's avatar
Rauschenberger committed
464
#' @param offset
Rauschenberger's avatar
Rauschenberger committed
465
#' exon length\strong{:} vector of length \eqn{p}
Rauschenberger's avatar
Rauschenberger committed
466
#' 
Rauschenberger's avatar
Rauschenberger committed
467
468
#' @param group
#' gene names\strong{:} vector of length \eqn{p}
Rauschenberger's avatar
Rauschenberger committed
469
470
471
472
#' 
#' @examples
#' NA
#' 
Rauschenberger's avatar
Rauschenberger committed
473
adjust.covariates <- function(x,offset,group){
Rauschenberger's avatar
Rauschenberger committed
474
475
476
    if(!is.numeric(x)|!is.matrix(x)){
        stop("Argument \"x\" is no numeric matrix.",call.=FALSE)
    }
Rauschenberger's avatar
Rauschenberger committed
477
478
479
480
481
    if(!is.numeric(offset)|!is.vector(offset)){
        stop("Argument \"offset\" is no numeric vector.",call.=FALSE)
    }
    if(any(offset<0)){
        stop("Argument \"offset\" takes negative values",call.=FALSE)   
Rauschenberger's avatar
Rauschenberger committed
482
    }
Rauschenberger's avatar
Rauschenberger committed
483
484
485
486
    if(!is.character(group)|!is.vector(group)){
        stop("Argument \"group\" is no character vector.",call.=FALSE)
    }
    if(ncol(x)!=length(group)|ncol(x)!=length(offset)){
Rauschenberger's avatar
Rauschenberger committed
487
488
        stop("Contradictory dimensions.",call.=FALSE)
    }
Rauschenberger's avatar
Rauschenberger committed
489
490
    n <- nrow(x); p <- ncol(x); names <- dimnames(x)
    x <- as.numeric(x)
Rauschenberger's avatar
Rauschenberger committed
491
    offset <- rep(offset,each=n)
Rauschenberger's avatar
Rauschenberger committed
492
493
494
495
496
497
498
    group <- strsplit(group,split=",")
    group <- sapply(group,function(x) x[[1]][1])
    group <- rep(group,each=n)
    lmer <- lme4::lmer(x ~ offset + (1|group))
    x <- matrix(stats::residuals(lmer),nrow=n,ncol=p,dimnames=names)
    x <- x-min(x)
    return(x)
Rauschenberger's avatar
Rauschenberger committed
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
}

#' @export
#' @title
#' Search for genes
#' 
#' @description
#' This function retrieves all genes on a chromosome.
#' 
#' @param chr
#' chromosome\strong{:} integer 1-22
#' 
#' @param path
#' path to gene transfer format files (.gtf)
#' 
#' @param release
#' character "NCBI36", "GRCh37", or "GRCh38"
#' 
#' @param build
#' integer 49-91
#' 
#' @examples
#' NA
#' 
Rauschenberger's avatar
Rauschenberger committed
523
524
525
map.genes <- function(chr,path=getwd(),release="GRCh37",build=71){
    
    # check input
Rauschenberger's avatar
Rauschenberger committed
526
    if(!chr %in% 1:22){
Rauschenberger's avatar
Rauschenberger committed
527
528
529
530
531
532
533
534
535
        stop("Invalid argument \"chr\".",call.=FALSE)
    }
    if(!release %in% c("NCBI36","GRCh37","GRCh38")){
        stop("Invalid argument \"release\".",call.=FALSE)
    }
    if(!build %in% 49:91){
        stop("Invalid argument \"build\".",call.=FALSE)
    }
    
Rauschenberger's avatar
Rauschenberger committed
536
537
    file <- paste0("Homo_sapiens.",release,".",build,".gtf")
    if(!file.exists(file.path(path,file))){
Rauschenberger's avatar
Rauschenberger committed
538
539
540
541
542
543
544
545
546
        url <- paste0("ftp://ftp.ensembl.org/pub/release-",build,
                      "/gtf/homo_sapiens/",file,".gz")
        destfile <- file.path(path,paste0(file,".gz"))
        utils::download.file(url=url,destfile=destfile,method="auto")
        R.utils::gunzip(filename=destfile,remove=FALSE,overwrite=TRUE)
    }
    object <- refGenome::ensemblGenome()
    refGenome::basedir(object) <- path
    refGenome::read.gtf(object,filename=file)
Rauschenberger's avatar
Rauschenberger committed
547
548
549
550
551
552
    x <- refGenome::getGenePositions(object=object,by="gene_id")
    x <- x[x$seqid==chr & x$gene_biotype=="protein_coding",]
    x <- x[,c("gene_id","seqid","start","end")]
    rownames(x) <- NULL
    colnames(x)[colnames(x)=="seqid"] <- "chr"
    return(x)
Rauschenberger's avatar
Rauschenberger committed
553
554
555
556
557
558
559
560
561
}

#' @export
#' @title
#' Search for exons
#' 
#' @description
#' This function
#' 
Rauschenberger's avatar
Rauschenberger committed
562
#' @param gene
Rauschenberger's avatar
Rauschenberger committed
563
564
#' gene names\strong{:} vector with one entry per gene,
#' including the gene names
Rauschenberger's avatar
Rauschenberger committed
565
#' 
Rauschenberger's avatar
Rauschenberger committed
566
#' @param exon
Rauschenberger's avatar
Rauschenberger committed
567
568
569
#' exon names\strong{:} vector with one entry per exon,
#' including the corresponding \emph{gene} names
#' (separated by comma if multiple gene names)
Rauschenberger's avatar
Rauschenberger committed
570
571
572
573
574
575
#' 
#' @details
#' The exon names should contain the gene names. For each gene, this function
#' returns the indices of the exons.
#' 
#' @examples
Rauschenberger's avatar
Rauschenberger committed
576
577
578
#' gene <- c("A","B","C")
#' exon <- c("A","A,B","B","B,C","C")
#' map.exons(gene,exon)
Rauschenberger's avatar
Rauschenberger committed
579
#'
Rauschenberger's avatar
Rauschenberger committed
580
581
582
map.exons <- function(gene,exon){
    p <- length(gene)
    x <- list()
Rauschenberger's avatar
Rauschenberger committed
583
584
585
    pb <- utils::txtProgressBar(min=0,max=p,style=3)
    for(i in seq_len(p)){
        utils::setTxtProgressBar(pb=pb,value=i)
Rauschenberger's avatar
Rauschenberger committed
586
587
        which <- as.integer(grep(pattern=gene[i],x=exon))
        x[[i]] <- which
Rauschenberger's avatar
Rauschenberger committed
588
    }
Rauschenberger's avatar
Rauschenberger committed
589
590
591
    close(con=pb)
    names(x) <- gene
    return(x)
Rauschenberger's avatar
Rauschenberger committed
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
}

#' @export
#' @title
#' Search for SNPs
#' 
#' @description
#' This function
#' 
#' @param gene.chr
#' chromosome\strong{:}
#' numeric vector with one entry per gene
#' 
#' @param gene.start
#' start position\strong{:}
#' numeric vector with one entry per gene
#' 
#' @param gene.end
#' end position\strong{:}
#' numeric vector with one entry per gene
#' 
#' @param snp.chr
#' integer 1-22
#' 
#' @param snp.pos
#' chromosomal position of SNPs\strong{:}
#' numeric vector with one entry per SNP
#' 
Rauschenberger's avatar
Rauschenberger committed
620
621
622
623
#' @param dist
#' number of base pairs before start position\strong{:}
#' integer
#' 
Rauschenberger's avatar
Rauschenberger committed
624
#' @examples
Rauschenberger's avatar
Rauschenberger committed
625
626
627
#' gene.chr <- rep(1,times=5)
#' gene.start <- 1:5
#' gene.end <- 2:6
Rauschenberger's avatar
Rauschenberger committed
628
#'
Rauschenberger's avatar
Rauschenberger committed
629
630
631
632
633
634
#' snp.chr <- rep(1,times=100)
#' snp.pos <- seq(from=1,to=4.9,length.out=100)
#' 
#' map.snps(gene.chr,gene.start,gene.end,snp.chr,snp.pos,dist=0)
#'
map.snps <- function(gene.chr,gene.start,gene.end,snp.chr,snp.pos,dist=10^3){
Rauschenberger's avatar
Rauschenberger committed
635
636
637
638
    if(length(gene.chr)!=length(gene.start)|length(gene.chr)!=length(gene.end)){
        stop("Invalid.",call.=FALSE)
    }
    p <- length(gene.start)
Rauschenberger's avatar
Rauschenberger committed
639
    x <- data.frame(from=integer(length=p),to=integer(length=p))
Rauschenberger's avatar
Rauschenberger committed
640
641
642
643
644
    pb <- utils::txtProgressBar(min=0,max=p,style=3)
    for(i in seq_len(p)){ # 
        utils::setTxtProgressBar(pb=pb,value=i)
        chr <- snp.chr == gene.chr[i]
        if(!any(chr)){next}
Rauschenberger's avatar
Rauschenberger committed
645
        start <- snp.pos >= (gene.start[i] - dist)
Rauschenberger's avatar
Rauschenberger committed
646
647
648
        end <- snp.pos <= gene.end[i] + 0
        which <- as.integer(which(chr & start & end))
        if(length(which)==0){next}
Rauschenberger's avatar
Rauschenberger committed
649
650
        x$from[i] <- min(which)
        x$to[i] <- max(which)
Rauschenberger's avatar
Rauschenberger committed
651
652
653
        if(length(which)==1){next}
        if(!all(diff(which)==1)){stop("SNPs are in wrong order!")}
    }
Rauschenberger's avatar
Rauschenberger committed
654
655
    close(con=pb)
    return(x)
Rauschenberger's avatar
Rauschenberger committed
656
657
658
659
}

#' @export
#' @title
Rauschenberger's avatar
Rauschenberger committed
660
#' Drop trivial tests
Rauschenberger's avatar
Rauschenberger committed
661
662
663
664
665
666
#' 
#' @description
#' This function
#' 
#' @param map
#' list with names "genes", "exons", and "snps"
Rauschenberger's avatar
Rauschenberger committed
667
668
#' (output from \code{\link{map.genes}}, \code{\link{map.exons}},
#' and \code{\link{map.snps}})
Rauschenberger's avatar
Rauschenberger committed
669
670
#' 
#' @details
Rauschenberger's avatar
Rauschenberger committed
671
#' This functions drops tests for genes without SNPs or with a single exon.
Rauschenberger's avatar
Rauschenberger committed
672
673
674
675
#' 
#' @examples
#' NA
#' 
Rauschenberger's avatar
Rauschenberger committed
676
drop.trivial <- function(map){
Rauschenberger's avatar
Rauschenberger committed
677
678
679
680
681
682
683
684
685
686
687
    
    # check input
    if(length(map)!=3){
        stop("Unexpected argument length.",call.=FALSE)
    }
    if(any(names(map)!=c("genes","exons","snps"))){
        stop("Unexpected argument names.",call.=FALSE)
    }
    
    # search
    p <- nrow(map$genes)
Rauschenberger's avatar
Rauschenberger committed
688
689
    pass <- rep(NA,times=p)
    pb <- utils::txtProgressBar(min=0,max=p,style=3)
Rauschenberger's avatar
Rauschenberger committed
690
    for(i in seq_len(p)){
Rauschenberger's avatar
Rauschenberger committed
691
692
693
694
695
696
697
698
699
700
        utils::setTxtProgressBar(pb=pb,value=i)
        ys <- map$exons[[i]]
        check <- logical()
        # Exclude genes without SNPs:
        check[1] <- map$snps$from[i] > 0
        check[2] <- map$snps$to[i] > 0
        # Exclude genes with single exon:
        check[3] <- length(ys) > 1
        pass[i] <- all(check)
    }
Rauschenberger's avatar
Rauschenberger committed
701
    close(con=pb)
Rauschenberger's avatar
Rauschenberger committed
702
703
704
705
706
707
708
709
710
    
    # check output
    if(any(pass[map$snps$to==0 & map$snps$from==0])){
        stop("Genes without any SNPs.",call.=FALSE)
    }
    if(any(pass[sapply(map$exons,length)<2])){
        stop("Genes without multiple exons.",call.=FALSE)
    }
    
Rauschenberger's avatar
Rauschenberger committed
711
712
713
714
    map$genes <- map$genes[pass,]
    map$exons <- map$exons[pass]
    map$snps <- map$snps[pass,]
    return(map)
Rauschenberger's avatar
Rauschenberger committed
715
716
717
718
719
}


#' @export
#' @title
Rauschenberger's avatar
Rauschenberger committed
720
#' Conduct single tests
Rauschenberger's avatar
Rauschenberger committed
721
722
723
724
725
726
727
728
729
730
731
732
733
734
#' 
#' @description
#' This function
#' 
#' @param Y
#' exon expression\strong{:}
#' matrix with \eqn{n} rows (samples) and \eqn{p} columns (exons)
#' 
#' @param X
#' SNP genotype\strong{:}
#' matrix with \eqn{n} rows (samples) and \eqn{q} columns (SNPs)
#' 
#' @param map
#' list with names "genes", "exons", and "snps"
Rauschenberger's avatar
Rauschenberger committed
735
736
#' (output from \code{\link{map.genes}}, \code{\link{map.exons}},
#' and \code{\link{map.snps}})
Rauschenberger's avatar
Rauschenberger committed
737
738
739
740
741
742
743
744
745
746
747
748
#' 
#' @param i
#' gene index\strong{:}
#' integer between \eqn{1} and \code{nrow(map$genes)}
#' 
#' @param limit
#' cutoff for rounding \code{p}-values
#' 
#' @param steps
#' size of permutation chunks\strong{:}
#' integer vector
#' 
Rauschenberger's avatar
Rauschenberger committed
749
750
751
#' @param rho
#' correlation\strong{:}
#' numeric vector with values between \eqn{0} and \eqn{1}
Rauschenberger's avatar
Rauschenberger committed
752
#' 
Rauschenberger's avatar
Rauschenberger committed
753
754
755
756
757
758
759
760
#' @details
#' The maximum number of permutations equals \code{sum(steps)}. Permutations is
#' interrupted if at least \code{limit} test statistics for the permuted data
#' are larger than the test statistic for the observed data.
#' 
#' @examples
#' NA
#' 
Rauschenberger's avatar
Rauschenberger committed
761
test.single <- function(Y,X,map,i,limit=NULL,steps=NULL,rho=c(0,0.5,1)){
Rauschenberger's avatar
Rauschenberger committed
762
763
764
    
    if(is.null(limit)){limit <- 5}
    if(is.null(steps)){steps <- c(10,20,20,50)}
Rauschenberger's avatar
Rauschenberger committed
765
    
Rauschenberger's avatar
Rauschenberger committed
766
    # check input
Rauschenberger's avatar
Rauschenberger committed
767
768
769
770
771
772
    if(!is.numeric(limit)){
        stop("Argument \"limit\" is not numeric.",call.=FALSE)
    }
    if(limit<1){
        stop("Argument \"limit\" is below one.",call.=FALSE)
    }
Rauschenberger's avatar
Rauschenberger committed
773
    if(!is.numeric(steps)|!is.vector(steps)){
Rauschenberger's avatar
Rauschenberger committed
774
775
776
777
778
779
        stop("Argument \"steps\" is no numeric vector.",call.=FALSE)
    }
    if(sum(steps)<2){
        stop("Too few permutations \"sum(steps)\".",call.=FALSE)
    }
    
Rauschenberger's avatar
Rauschenberger committed
780
    # extract data
Rauschenberger's avatar
Rauschenberger committed
781
    ys <- map$exons[[i]]
Rauschenberger's avatar
Rauschenberger committed
782
    y <- Y[,ys,drop=FALSE]
Rauschenberger's avatar
Rauschenberger committed
783
    xs <- seq(from=map$snps$from[i],to=map$snps$to[i],by=1)
Rauschenberger's avatar
Rauschenberger committed
784
    x <- X[,xs,drop=FALSE]
Rauschenberger's avatar
Rauschenberger committed
785
    
Rauschenberger's avatar
Rauschenberger committed
786
    # test effects
Rauschenberger's avatar
Rauschenberger committed
787
788
    pvalue <- rep(x=NA,times=length(rho))
    for(j in seq_along(rho)){
Rauschenberger's avatar
Rauschenberger committed
789
790
        tstat <- spliceQTL:::G2.multin(
            dep.data=y,indep.data=x,nperm=steps[1]-1,rho=rho[j])$Sg
Rauschenberger's avatar
Rauschenberger committed
791
        for(nperm in steps[-1]){
Rauschenberger's avatar
Rauschenberger committed
792
793
            tstat <- c(tstat,spliceQTL:::G2.multin(
                dep.data=y,indep.data=x,nperm=nperm,rho=rho[j])$Sg[-1])
Rauschenberger's avatar
Rauschenberger committed
794
            if(sum(tstat >= tstat[1]) >= limit){break}
Rauschenberger's avatar
Rauschenberger committed
795
        }
Rauschenberger's avatar
Rauschenberger committed
796
        pvalue[j] <- mean(tstat >= tstat[1],na.rm=TRUE)
Rauschenberger's avatar
Rauschenberger committed
797
    }
Rauschenberger's avatar
Rauschenberger committed
798

Rauschenberger's avatar
Rauschenberger committed
799
800
801
802
    return(pvalue)
}


Rauschenberger's avatar
Rauschenberger committed
803
804
#' @export
#' @title
Rauschenberger's avatar
Rauschenberger committed
805
#' Conduct multiple tests
Rauschenberger's avatar
Rauschenberger committed
806
807
#' 
#' @description
Rauschenberger's avatar
Rauschenberger committed
808
#' This function ...
Rauschenberger's avatar
Rauschenberger committed
809
810
811
812
813
814
815
816
817
#' 
#' @param Y
#' exon expression\strong{:}
#' matrix with \eqn{n} rows (samples) and \eqn{p} columns (exons)
#' 
#' @param X
#' SNP genotype\strong{:}
#' matrix with \eqn{n} rows (samples) and \eqn{q} columns (SNPs)
#' 
Rauschenberger's avatar
Rauschenberger committed
818
819
820
821
#' @param map
#' list with names "genes", "exons", and "snps"
#' (output from \code{map.genes}, \code{map.exons}, and \code{map.snps})
#' 
Rauschenberger's avatar
Rauschenberger committed
822
823
824
825
826
827
828
829
830
831
832
#' @param rho
#' correlation\strong{:}
#' numeric vector with values between \eqn{0} and \eqn{1}
#' 
#' @details
#' Automatic adjustment of the number of permutations
#' such that Bonferroni-significant p-values are possible.
#' 
#' @examples
#' NA
#' 
Rauschenberger's avatar
Rauschenberger committed
833
834
test.multiple <- function(Y,X,map,rho=c(0,0.5,1)){
    
Rauschenberger's avatar
Rauschenberger committed
835
836
837
    p <- nrow(map$genes)
    
    # permutations
Rauschenberger's avatar
Rauschenberger committed
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
    if(FALSE){
        min <- 5
        max <- p/0.05+1
        limit <- ceiling(0.05*max/p)
        base <- 1.5 # adjust sequence
        from <- log(min,base=base)
        to <- log(max,base=base)
        steps <- c(min,diff(unique(round(base^(seq(from=from,to=to,length.out=20))))))
    }
    
    if(TRUE){
        max <- p/0.05+1
        limit <- ceiling(0.05*max/p)
        steps <- diff(limit^seq(from=1,to=log(max)/log(limit),length.out=pmin(p,20)))
        steps <- c(limit,round(steps))
        steps[length(steps)] <- max-sum(steps[-length(steps)])
    }
Rauschenberger's avatar
Rauschenberger committed
855
    
Rauschenberger's avatar
Rauschenberger committed
856
    if(max != sum(steps)){stop("Invalid combination?",call.=FALSE)}
Rauschenberger's avatar
Rauschenberger committed
857
858
859
860
861
    
    # parallel computation
    type <- ifelse(test=.Platform$OS.type=="windows",yes="PSOCK",no="FORK")
    cluster <- parallel::makeCluster(spec=8,type=type)
    parallel::clusterSetRNGStream(cl=cluster,iseed=1)
Rauschenberger's avatar
Rauschenberger committed
862
    parallel::clusterExport(cl=cluster,varlist=c("Y","X","map","limit","steps","rho"),envir=environment())
Rauschenberger's avatar
Rauschenberger committed
863
    start <- Sys.time()
Rauschenberger's avatar
Rauschenberger committed
864
    pvalue <- parallel::parLapply(cl=cluster,X=seq_len(p),fun=function(i) spliceQTL::test.single(Y=Y,X=X,map=map,i=i,limit=limit,steps=steps,rho=rho))
Rauschenberger's avatar
Rauschenberger committed
865
866
867
868
869
    end <- Sys.time()
    parallel::stopCluster(cluster)
    rm(cluster)
    
    # tyding up
Rauschenberger's avatar
Rauschenberger committed
870
    pvalue <- do.call(what=rbind,args=pvalue)
Rauschenberger's avatar
Rauschenberger committed
871
    colnames(pvalue) <- paste0("rho=",rho)
Rauschenberger's avatar
Rauschenberger committed
872
873
    rownames(pvalue) <- map$genes$gene_id
    
Rauschenberger's avatar
Rauschenberger committed
874
    return(pvalue)
Rauschenberger's avatar
Rauschenberger committed
875
876
877
878
}



Rauschenberger's avatar
Rauschenberger committed
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
#--- spliceQTL test functions --------------------------------------------------

# Function: G2.multin
# This is to compute the G2 test statistic under the assumption that the response follows a multinomial distribution
### Input 
### dep data and indep data with samples on the rows and genes on the columns
### grouping: Either a logical value = F or a matrix with a single column and same number of rows as samples. 
###         Column name should be defined.
###         Contains clinical information of the samples. 
###         Should have two groups only. 
### nperm : number of permutations 
### rho: the null correlation between SNPs
### mu: the null correlation between observations corresponding to different exons and different individuals

### Output
### A list containing G2 p.values and G2 test statistics

### Example : G2T = G2(dep.data = cgh, indep.data = expr, grouping=F, stand=TRUE, nperm=1000)
### G2 p.values : G2T$G2p
### G2 TS : G2T$$Sg

Rauschenberger's avatar
Rauschenberger committed
900
G2.multin <- function(dep.data,indep.data,stand=TRUE,nperm=100,grouping=F,rho=0,mu=0){
Rauschenberger's avatar
Rauschenberger committed
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
    
    nperm = nperm
    ## check for the number of samples in dep and indep data
    
    
    if (nrow(dep.data)!=nrow(indep.data)){
        cat("number of samples not same in dep and indep data","\n")
    }
    
    if(any(abs(rho)>1)){
        cat("correlations rho larger than abs(1) are not allowed")
    }
    
    nresponses <- ncol(dep.data)
    ncovariates <- ncol(indep.data)
    ### centering and standardizing the data are not done in this case
    
    #  dep.data = scale(dep.data,center=T,scale=stand)
    #  indep.data = scale(indep.data,center=T,scale=stand)
    
    #### No  grouping of the samples.
    
    ## Calculate U=(I-H)Y and UU', where Y has observations on rows; also tau.mat=X*W.rho*X', 
    ##   where X has observations on rows and variables on columns
    ##  and W.rho = I + rho*(J-I), a square matrix with as many rows as columns in X
    ## NOTE: this formulation uses X with n obs on the rows and m covariates no the columns, so it is the transpose of the first calculations
    nsamples <- nrow(dep.data)
    n.persample <- rowSums(dep.data)
    n.all <- sum(dep.data)
    H <- (1/n.all)*matrix( rep(n.persample,each=nsamples),nrow=nsamples,byrow=T)
    U <- (diag(rep(1,nsamples)) - H) %*% dep.data
    ## Now we may have a vector of values for rho - so we define tau.mat as an array, with the 3rd index corresponding to the value of rho
    tau.mat <- array(0,dim=c(nsamples,nsamples,length(rho)))
    for(xk in 1:length(rho))  
    {  
        if (rho[xk]==0) { tau.mat[,,xk] <- tcrossprod(indep.data) } 
        else { w.rho <- diag(rep(1,ncovariates)) + rho[xk]*(tcrossprod(rep(1,ncovariates)) -diag(rep(1,ncovariates))  )
        tau.mat[,,xk] <- indep.data %*% w.rho %*% t(indep.data)}
        
    }
    ######################################
    ### NOTES ARMIN START ################
    # all(X %*% t(X) == tau.mat[,,1]) # rho = 0 -> TRUE
    # all(X %*% (t(X) %*% X) %*% t(X) == tau.mat[,,1]) # rho = 1
    # plot(as.numeric(X %*% (t(X) %*% X) %*% t(X)),as.numeric(tau.mat[,,1]))
    ### NOTES ARMIN END ##################
    ######################################
    samp_names = 1:nsamples ## this was rownames(indep.data), but I now do this so that rownames do not have to be added to the array tau.mat
    Sg = get.g2stat.multin(U,mu=mu,rho=rho,tau.mat)
    ### now we will have a vector as result, with one value per combination of values of rho and mu
    #
    ### G2 
    ### Permutations
    # When using permutations: only the rows of tau.mat are permuted
    # To check how the permutations can be efficiently applied, see tests_permutation_g2_multin.R
    
    
    perm_samp = matrix(0, nrow=nrow(indep.data), ncol=nperm)   ## generate the permutation matrix
    for(i in 1:ncol(perm_samp)){
        perm_samp[,i] = samp_names[sample(1:length(samp_names),length(samp_names))]
    }
    
    ## permutation starts - recompute tau.mat  (or recompute U each time)
    for (perm in 1:nperm){
        tau.mat.perm = tau.mat[perm_samp[,perm],,,drop=FALSE]          # permute rows
        tau.mat.perm = tau.mat.perm[,perm_samp[,perm],,drop=FALSE]     # permute columns
        
Rauschenberger's avatar
Rauschenberger committed
968
        Sg = c(Sg,spliceQTL:::get.g2stat.multin(U, mu=mu,rho=rho,tau.mat.perm) )
Rauschenberger's avatar
Rauschenberger committed
969
970
971
972
973
974
975
976
977
978
979
980
    }
    
    
    ########################################################################
    
    #### G2 test statistic
    # *** recompute for a vector of values for each case - just reformat the result with as many rows as permutations + 1,
    # and as many columns as combinations of values of rho and mu
    Sg = matrix(Sg,nrow=nperm+1,ncol=length(mu)*length(rho))
    colnames(Sg) <- paste(rep("rho",ncol(Sg)),rep(1:length(rho),each=length(mu)),rep("mu",ncol(Sg)),rep(1:length(mu),length(rho)) )
    
    ### Calculte G2 pval
Rauschenberger's avatar
Rauschenberger committed
981
    G2p =  apply(Sg,2,spliceQTL:::get.pval.percol) 
Rauschenberger's avatar
Rauschenberger committed
982
983
984
985
986
987
988
989
990
991
992
993
    
    return (list(perm = perm_samp,G2p = G2p,Sg = Sg))
}

# Function: get.g2stat.multin
# Computes the G2 test statistic given two data matrices, under a multinomial distribution
# This is used internally by the G2 function
# Inputs: 
#  U = (I-H)Y, a n*K matrix where n=number obs and K=number multinomial responses possible
#  tau.mat = X' W.rho X, a n*n matrix : both square, symmetric matrices with an equal number of rows
# Output: test statistic (single value)
# 
Rauschenberger's avatar
Rauschenberger committed
994
get.g2stat.multin <- function(U, mu, rho, tau.mat){
Rauschenberger's avatar
Rauschenberger committed
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
    g2tstat <- NULL
    for(xk in 1:length(rho))
    {
        for(xj in 1:length(mu))
        {
            if(mu[xj]==0) { g2tstat <- c(g2tstat, sum( diag( tcrossprod(U) %*% tau.mat[,,xk] ) ) )
            } else {
                g2tstat <- c(g2tstat, (1-mu[xj])*sum(diag( tcrossprod(U) %*% tau.mat[,,xk] ) ) + mu[xj]*sum( t(U) %*% tau.mat[,,xk] %*% U )  )
            }
            
        }
    }
    g2tstat
}

# Function: get.pval.percol
# This function takes a vector containing the observed test stat as the first entry, followed by values generated by permutation,
# and computed the estimated p-value
# Input
# x: a vector with length nperm+1
# Output
# the pvalue computed
get.pval.percol <- function(x){
    pval = mean(x[1]<= c(Inf , x[2:length(x)]))
    pval
}