functions.R 32.5 KB
Newer Older
Rauschenberger's avatar
Rauschenberger committed
1

Rauschenberger's avatar
Rauschenberger committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

#' @name spliceQTL-package
#' @md
#' @aliases spliceQTL
#' 
#' @title
#' 
#' Alternative Splicing
#' 
#' @description
#' 
#' This R package includes various functions
#' for applying the global test of alternative splicing.
#' Some functions only work on the virtual machine (see below).
#' 
#' @seealso 
#' 
#' Prepare BBMRI and Geuvadis data:
#' * \code{\link{get.snps.geuvadis}} (not VM)
#' * \code{\link{get.snps.bbmri}} (only VM)
#' * \code{\link{get.exons.geuvadis}} (only VM)
#' * \code{\link{get.exons.bbmri}} (only VM)
#' 
#' Process samples and covariates:
#' * \code{\link{match.samples}}
#' * \code{\link{adjust.samples}}
#' * \code{\link{adjust.covariates}}
#' 
#' Search for exons and SNPs:
#' * \code{\link{map.genes}}
#' * \code{\link{map.exons}}
#' * \code{\link{map.snps}}
#' * \code{\link{drop.trivial}}
#' 
#' Test for alternative splicing:
#' * \code{\link{test.single}}
#' * \code{\link{test.multiple}}
#'
#' @keywords documentation
#' @docType package
#' 
NULL


Rauschenberger's avatar
Rauschenberger committed
46
47
48
49
50
51
52
53
54
55
#' @export
#' @title
#' Get SNP data (Geuvadis)
#' 
#' @description
#' This function transforms SNP data (local machine).
#' 
#' @param chr
#' chromosome: integer \eqn{1-22}
#' 
Rauschenberger's avatar
Rauschenberger committed
56
#' @param data
Rauschenberger's avatar
Rauschenberger committed
57
58
#' local directory for VCF (variant call format) and SDRF (sample and data relationship format) files
#' 
Rauschenberger's avatar
Rauschenberger committed
59
60
61
#' @param path
#' local directory for output
#' 
Rauschenberger's avatar
Rauschenberger committed
62
63
64
#' @examples
#' path <- "C:/Users/a.rauschenbe/Desktop/spliceQTL/data"
#' 
Rauschenberger's avatar
Rauschenberger committed
65
get.snps.geuvadis <- function(chr,data=NULL,path=getwd()){
Rauschenberger's avatar
Rauschenberger committed
66
    
Rauschenberger's avatar
Rauschenberger committed
67
68
69
70
71
72
73
74
75
76
77
78
    if(is.null(data)){
        data <- path
        # download SNP data
        file <- paste0("GEUVADIS.chr",chr,".PH1PH2_465.IMPFRQFILT_BIALLELIC_PH.annotv2.genotypes.vcf.gz")
        url <- paste0("http://www.ebi.ac.uk/arrayexpress/files/E-GEUV-1/genotypes/",file)
        destfile <- file.path(data,file)
        if(!file.exists(destfile)){
            utils::download.file(url=url,destfile=destfile,method="auto")
        }
        # transform with PLINK
        setwd(data)
        system(paste0("plink --vcf GEUVADIS.chr",chr,".PH1PH2_465.IMPFRQFILT_BIALLELIC_PH.annotv2.genotypes.vcf.gz",
Rauschenberger's avatar
Rauschenberger committed
79
                  " --maf 0.05 --geno 0 --make-bed --out snps",chr),invisible=FALSE)
Rauschenberger's avatar
Rauschenberger committed
80
81
82
83
84
85
86
87
        # obtain identifiers
        file <- "E-GEUV-1.sdrf.txt"
        url <- paste("http://www.ebi.ac.uk/arrayexpress/files/E-GEUV-1/",file,sep="")
        destfile <- file.path(data,file)
        if(!file.exists(destfile)){
            utils::download.file(url=url,destfile=destfile,method="auto")
        }
    }
Rauschenberger's avatar
Rauschenberger committed
88
89
    
    # read into R
Rauschenberger's avatar
Rauschenberger committed
90
91
92
    bed <- file.path(data,paste("snps",chr,".bed",sep=""))
    bim <- file.path(data,paste("snps",chr,".bim",sep=""))
    fam <- file.path(data,paste("snps",chr,".fam",sep=""))
Rauschenberger's avatar
Rauschenberger committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
    X <- snpStats::read.plink(bed=bed,bim=bim,fam=fam)
    X$fam <- NULL; all(diff(X$map$position) > 0)
    
    # fitler MAF
    maf <- snpStats::col.summary(X$genotypes)$MAF
    cond <- maf >= 0.05
    X$genotypes <- X$genotypes[,cond]
    X$map <- X$map[cond,]
    
    # format
    colnames(X$genotypes) <- paste0(X$map$chromosome,":",X$map$position)
    snps <- methods::as(object=X$genotypes,Class="numeric")
    class(snps) <- "integer"
    
    # change identifiers
Rauschenberger's avatar
Rauschenberger committed
108
    samples <- utils::read.delim(file=file.path(data,"E-GEUV-1.sdrf.txt"))
Rauschenberger's avatar
Rauschenberger committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
    match <- match(rownames(snps),samples$Source.Name)
    rownames(snps) <- samples$Comment.ENA_RUN.[match]
    snps <- snps[!is.na(rownames(snps)),]
    
    save(object=snps,file=file.path(path,paste0("Geuvadis.chr",chr,".RData")))
}


#' @export
#' @title
#' Get SNP data (BBMRI)
#' 
#' @description
#' This function transforms SNP data (virtual machine).
#' 
#' @param chr
#' chromosome: integer \eqn{1-22}
#' 
#' @param biobank
#' character "CODAM", "LL", "LLS", "NTR", "PAN", "RS", or NULL (all)
#' 
#' @param path
#' data directory
#' 
Rauschenberger's avatar
Rauschenberger committed
133
#' @param size
Rauschenberger's avatar
Rauschenberger committed
134
135
#' maximum number of SNPs to read in at once;
#' trade-off between memory usage (low) and speed (high)
Rauschenberger's avatar
Rauschenberger committed
136
#' 
Rauschenberger's avatar
Rauschenberger committed
137
138
139
#' @examples
#' path <- "/virdir/Scratch/arauschenberger/trial"
#'
Rauschenberger's avatar
Rauschenberger committed
140
get.snps.bbmri <- function(chr,biobank=NULL,path=getwd(),size=500*10^3){
Rauschenberger's avatar
Rauschenberger committed
141
142
143
144
145
146
147
148
149
150
151
152

    start <- Sys.time()
    message(rep("-",times=20)," chromosome ",chr," ",rep("-",times=20))
    
    p <- 5*10^6 # (maximum number of SNPs per chromosome, before filtering)
    skip <- seq(from=0,to=p,by=size)
    if(is.null(biobank)){
        study <- c("CODAM","LL","LLS0","LLS1","NTR0","NTR1","PAN","RS")
    } else if(biobank=="LLS"){
        study <- c("LLS0","LLS1")
    } else if(biobank=="NTR"){
        study <- c("NTR0","NTR1")
Rauschenberger's avatar
Rauschenberger committed
153
    } else if(biobank %in% c("CODAM","LL","PAN","RS")){
Rauschenberger's avatar
Rauschenberger committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
        study <- biobank
    } else{
        stop("Invalid biobank.",call.=FALSE)
    }
    collect <- matrix(list(),nrow=length(skip),ncol=length(study))
    colnames(collect) <- study
    
    for(i in seq_along(skip)){
        message("\n","chunk ",i,": ",appendLF=FALSE)
        for(j in seq_along(study)){
            message(study[j],"  ",appendLF=FALSE)
            
            # Locating files on virtual machine.
            dir <- study[j]
            if(study[j]=="LLS0"){dir <- "LLS/660Q"}
            if(study[j]=="LLS1"){dir <- "LLS/OmniExpr"}
            if(study[j]=="NTR0"){dir <- "NTR/Affy6"}
            if(study[j]=="NTR1"){dir <- "NTR/GoNL"}
            path0 <- file.path("/mnt/virdir/Backup/RP3_data/HRCv1.1_Imputation",dir)
Rauschenberger's avatar
Rauschenberger committed
173
            path1 <- path
Rauschenberger's avatar
Rauschenberger committed
174
175
176
177
178
            file0 <- paste0("chr",chr,".dose.vcf.gz")
            file1 <- paste0(study[j],".chr",chr,".dose.vcf.gz")
            file2 <- paste0(study[j],".chr",chr,".dose.vcf")
            
            # Decompressing missing files in personal folder.
Rauschenberger's avatar
Rauschenberger committed
179
180
181
182
            #if(!file.exists(file.path(path1,file2))){
            #    file.copy(from=file.path(path0,file0),to=file.path(path1,file1))
            #    R.utils::gunzip(filename=file.path(path1,file1),remove=TRUE,overwrite=TRUE)
            #}
Rauschenberger's avatar
Rauschenberger committed
183
184
            
            # Reading in files.
Rauschenberger's avatar
Rauschenberger committed
185
186
            #vcf <- vcfR::read.vcfR(file=file.path(path1,file2),skip=skip[i],nrows=size,verbose=FALSE)
            vcf <- vcfR::read.vcfR(file=file.path(path0,file0),skip=skip[i],nrows=size,verbose=FALSE)
Rauschenberger's avatar
Rauschenberger committed
187
188
189
190
191
192
193
194
195
196
197
            vcf <- vcf[vcf@fix[,"CHROM"]!="",] # bug fix
            vcf@fix[,"ID"] <- paste0(vcf@fix[,"ID"],"_",seq_len(dim(vcf)["variants"]))
            collect[i,j][[1]] <- vcf
            stop <- dim(vcf)["variants"]==0
            final <- dim(vcf)["variants"]<size
            if(stop){break}
        }
        print(utils::object.size(collect),units="Gb")
        end <- Sys.time()
        if(stop){break}
        
Rauschenberger's avatar
Rauschenberger committed
198
199
        #### start trial ####
        # ONLY RETAINING SNPS WITH COMPLETE DATA
Rauschenberger's avatar
Rauschenberger committed
200
201
        #position <- apply(collect[i,,drop=FALSE],2,function(x) x[[1]]@fix[,"POS"])
        position <- lapply(seq_along(study),function(j) collect[i,j][[1]]@fix[,"POS"])
Rauschenberger's avatar
Rauschenberger committed
202
203
204
205
206
207
208
        common <- Reduce(f=intersect,x=position)
        for(j in seq_along(study)){
            cond <- match(x=common,table=position[[j]])
            collect[i,j][[1]] <- collect[i,j][[1]][cond,]
        }
        #### end trial ####
        
Rauschenberger's avatar
Rauschenberger committed
209
210
211
        # Calculating minor allele frequency.
        num <- numeric(); maf <- list()
        for(j in seq_along(study)){
Rauschenberger's avatar
Rauschenberger committed
212
213
214
            #if(dim(collect[i,1][[1]])["variants"]!=dim(collect[i,j][[1]])["variants"]){
            #    stop("Incompatible dimensions!") # examine this!  
            #}
Rauschenberger's avatar
Rauschenberger committed
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
            num[j] <- dim(collect[i,j][[1]])["gt_cols"] # replace by adjusted sample sizes?
            maf[[j]] <- num[j]*vcfR::maf(collect[i,j][[1]])[,"Frequency"]
        }
        cond <- rowSums(do.call(what="cbind",args=maf))/sum(num)>0.05
        if(sum(cond)==0){if(final){break}else{next}}
        
        # Filtering out genotypes.
        for(j in seq_along(study)){
            gt <- vcfR::extract.gt(collect[i,j][[1]][cond,])
            gt[gt=="0|0"] <- 0
            gt[gt=="0|1"|gt=="1|0"] <- 1
            gt[gt=="1|1"] <- 2
            storage.mode(gt) <- "integer"
            collect[i,j][[1]] <- gt
        }
        
        if(final){break}
    }
    
    # Removing empty rows.
    cond <- apply(collect,1,function(x) all(sapply(x,length)==0))
    collect <- collect[!cond,,drop=FALSE]
Rauschenberger's avatar
Rauschenberger committed
237
    #save(object=collect,file=file.path(path1,paste0("temp.chr",chr,".RData")))
Rauschenberger's avatar
Rauschenberger committed
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
    #load(file.path(path1,paste0("temp.chr",chr,".RData")))
    
    # Fusing all matrices.
    snps <- NULL
    for(i in seq_len(nrow(collect))){
        inner <- NULL
        for(j in seq_len(ncol(collect))){
            add <- collect[i,j][[1]]
            colnames(add) <- paste0(colnames(collect)[j],":",colnames(add))
            inner <- cbind(inner,add)
        }
        snps <- rbind(snps,inner)
    }
    attributes(snps)$time <- end-start
    rownames(snps) <- sapply(strsplit(x=rownames(snps),split="_"),function(x) x[[1]])
    snps <- t(snps)
    
    # Filter samples.
    rownames(snps) <- sub(x=rownames(snps),pattern="LLS0|LLS1",replacement="LLS")
    rownames(snps) <- sub(x=rownames(snps),pattern="NTR0|NTR1",replacement="NTR")
Rauschenberger's avatar
Rauschenberger committed
258

Rauschenberger's avatar
Rauschenberger committed
259
260
261
262
263
    if(is.null(biobank)){
        save(object=snps,file=file.path(path1,paste0("BBMRI.chr",chr,".RData")))
    } else {
        save(object=snps,file=file.path(path1,paste0(biobank,".chr",chr,".RData")))
    }
Rauschenberger's avatar
Rauschenberger committed
264
265
    
    # Remove temporary files.
Rauschenberger's avatar
Rauschenberger committed
266
267
268
    #for(j in seq_along(study)){
    #    file.remove(file.path(path1,paste0(study[j],".chr",chr,".dose.vcf")))
    #}
Rauschenberger's avatar
Rauschenberger committed
269
    
Rauschenberger's avatar
Rauschenberger committed
270
271
272
}


Rauschenberger's avatar
Rauschenberger committed
273
274


Rauschenberger's avatar
Rauschenberger committed
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
#' @export
#' @title
#' Get exon data (Geuvadis)
#' 
#' @description
#' This function transforms exon data (virtual machine).
#' 
#' @param path
#' data directory 
#' 
#' @examples
#' path <- "/virdir/Scratch/arauschenberger/trial"
#' 
get.exons.geuvadis <- function(path=getwd()){

    nrows <- 303544
    file <-"/virdir/Scratch/rmenezes/data_counts.txt"
    exons <- utils::read.table(file=file,header=TRUE,nrows=nrows)
    exons <- exons[exons[,"chr"] %in% 1:22,] # autosomes
    rownames(exons) <- exon_id <- paste0(exons[,"chr"],"_",exons[,"start"],"_",exons[,"end"])
    gene_id <- as.character(exons[,4])
    exons <- t(exons[,-c(1:4)])

    save(list=c("exons","exon_id","gene_id"),file=file.path(path,"Geuvadis.exons.RData"))
}


#' @export
#' @title
#' Get exon data (BBMRI)
#' 
#' @description
#' This function transforms exon data (virtual machine).
#' 
#' @param path
#' data directory 
#' 
#' @examples
#' path <- "/virdir/Scratch/arauschenberger/trial"
#' 
get.exons.bbmri <- function(path=getwd()){
    
    # sample identifiers:
    # (1) loading quality controlled gene expression data 
    # (2) extracting sample identifiers
    # (3) removing identifiers without SNP data
    # (4) translating identifiers
    utils::data(rnaSeqData_ReadCounts_BIOS_cleaned,package="BBMRIomics") # (1)
Rauschenberger's avatar
Rauschenberger committed
323
324
    cd <- SummarizedExperiment::colData(counts)[,c("biobank_id","imputation_id","run_id")] # (2)
    counts <- NULL
Rauschenberger's avatar
Rauschenberger committed
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
    names(cd) <- substr(names(cd),start=1,stop=3) # abbreviate names
    cd <- cd[!is.na(cd$imp),] # (3)
    cd$id <- NA # (4)
    cd$id[cd$bio=="CODAM"] <- sapply(strsplit(x=cd$imp[cd$bio=="CODAM"],split="_"),function(x) x[[2]])
    cd$id[cd$bio=="LL"] <- sub(pattern="1_LLDeep_",replacement="",x=cd$imp[cd$bio=="LL"])
    cd$id[cd$bio=="LLS"] <- sapply(strsplit(x=cd$imp[cd$bio=="LLS"],split="_"),function(x) x[[2]])
    cd$id[cd$bio=="NTR"] <- sapply(strsplit(x=cd$imp[cd$bio=="NTR"],split="_"),function(x) x[[2]])
    cd$id[cd$bio=="PAN"] <- cd$imp[cd$bio=="PAN"]
    cd$id[cd$bio=="RS"] <- sub(pattern="RS1_|RS2_|RS3_",replacement="",x=cd$imp[cd$bio=="RS"])
    
    # Identify individual not with "id" but with "bio:id".
    any(duplicated(cd$id)) # TRUE
    sapply(unique(cd$bio),function(x) any(duplicated(cd$id[x]))) # FALSE
    
    # exon data:
    # (1) loading exon expression data
    # (2) extracting sample identifiers
    # (3) retaining autosomes
    # (4) retaining samples from above
    load("/virdir/Backup/RP3_data/RNASeq/v2.1.3/exon_base/exon_base_counts.RData") # (1)
    colnames(counts) <- sub(pattern=".exon.base.count.gz",replacement="",x=colnames(counts)) # (2)
    autosomes <- sapply(strsplit(x=rownames(counts),split="_"),function(x) x[[1]] %in% 1:22) # (3)
    exons <- counts[autosomes,cd$run] # (3) and (4)
    exon_id <- exon_id[autosomes] # (3)
    gene_id <- gene_id[autosomes] # (3)
    colnames(exons) <- paste0(cd$bio,":",cd$id)
    exons <- t(exons)
    
    save(list=c("exons","exon_id","gene_id"),file=file.path(path,"BBMRI.exons.RData"))
}


Rauschenberger's avatar
Rauschenberger committed
357
358
359
360
361
#' @export
#' @title
#' Prepare data matrices
#' 
#' @description
Rauschenberger's avatar
Rauschenberger committed
362
363
#' This function removes duplicate samples from each matrix,
#' only retains samples appearing in all matrices,
Rauschenberger's avatar
Rauschenberger committed
364
#' and brings samples into the same order.
Rauschenberger's avatar
Rauschenberger committed
365
#' 
Rauschenberger's avatar
Rauschenberger committed
366
#' @param ...
Rauschenberger's avatar
Rauschenberger committed
367
368
#' matrices with samples in the rows and variables in the columns,
#' with sample identifiers as rows names
Rauschenberger's avatar
Rauschenberger committed
369
#' 
Rauschenberger's avatar
Rauschenberger committed
370
371
#' @param message
#' display messages\strong{:} logical
Rauschenberger's avatar
Rauschenberger committed
372
373
#' 
#' @examples
Rauschenberger's avatar
Rauschenberger committed
374
375
376
#' X <- matrix(rnorm(6),nrow=3,ncol=2,dimnames=list(c("A","B","C")))
#' Z <- matrix(rnorm(9),nrow=3,ncol=3,dimnames=list(c("B","A","B")))
#' match.samples(X,Z)
Rauschenberger's avatar
Rauschenberger committed
377
#' 
Rauschenberger's avatar
Rauschenberger committed
378
match.samples <- function(...,message=TRUE){
Rauschenberger's avatar
Rauschenberger committed
379
    
Rauschenberger's avatar
Rauschenberger committed
380
381
    list <- list(...)
    if(length(list)==1 & is.list(list[[1]])){list <- list[[1]]}
Rauschenberger's avatar
Rauschenberger committed
382
383
384
385
386
    if(is.null(names(list))){
        names(list) <- sapply(substitute(list(...))[-1],deparse)
    }
    names <- names(list)
    
Rauschenberger's avatar
Rauschenberger committed
387
    # check input
Rauschenberger's avatar
Rauschenberger committed
388
389
390
    cond <- sapply(list,function(x) !is.matrix(x))
    if(any(cond)){
        stop("Provide matrices!",call.=FALSE)
Rauschenberger's avatar
Rauschenberger committed
391
    }
Rauschenberger's avatar
Rauschenberger committed
392
393
394
    cond <- sapply(list,function(x) is.null(rownames(x)))
    if(any(cond)){
        stop("Provide row names!",call.=FALSE)
Rauschenberger's avatar
Rauschenberger committed
395
396
    }
    
Rauschenberger's avatar
Rauschenberger committed
397
    # remove duplicated samples
Rauschenberger's avatar
Rauschenberger committed
398
    duplic <- lapply(list,function(x) duplicated(rownames(x)))
Rauschenberger's avatar
Rauschenberger committed
399
    for(i in seq_along(list)){
Rauschenberger's avatar
Rauschenberger committed
400
401
402
        number <- round(100*mean(duplic[[i]]))
        if(message){message(number," duplicates in \"",names[i],"\"")}
        list[[i]] <- list[[i]][!duplic[[i]],,drop=FALSE]
Rauschenberger's avatar
Rauschenberger committed
403
    }
Rauschenberger's avatar
Rauschenberger committed
404
405
    
    # retain overlapping samples
Rauschenberger's avatar
Rauschenberger committed
406
407
408
    all <- Reduce(f=intersect,x=lapply(list,rownames))
    for(i in seq_along(list)){
        percent <- round(100*mean(rownames(list[[i]]) %in% all))
Rauschenberger's avatar
Rauschenberger committed
409
        if(message){message(percent,"% overlap in \"",names[i],"\"")}
Rauschenberger's avatar
Rauschenberger committed
410
        list[[i]] <- list[[i]][all,,drop=FALSE]
Rauschenberger's avatar
Rauschenberger committed
411
    }
Rauschenberger's avatar
Rauschenberger committed
412
413
    
    # check output
Rauschenberger's avatar
Rauschenberger committed
414
415
    cond <- sapply(list,function(x) any(duplicated(rownames(x))))
    if(any(cond)){
Rauschenberger's avatar
Rauschenberger committed
416
417
        stop("Duplicate samples!",call.=FALSE)
    }
Rauschenberger's avatar
Rauschenberger committed
418
419
    cond <- sapply(list,function(x) nrow(x)!=nrow(list[[1]]))
    if(any(cond)){
Rauschenberger's avatar
Rauschenberger committed
420
421
        stop("Different sample sizes!",call.=FALSE)
    }
Rauschenberger's avatar
Rauschenberger committed
422
423
    cond <- sapply(list,function(x) any(rownames(x)!=rownames(list[[1]])))
    if(any(cond)){
Rauschenberger's avatar
Rauschenberger committed
424
425
426
        stop("Different sample names!",call.=FALSE)
    }
    
Rauschenberger's avatar
Rauschenberger committed
427
    return(list)
Rauschenberger's avatar
Rauschenberger committed
428
429
430
431
432
433
434
}

#' @export
#' @title
#' Adjust library sizes
#' 
#' @description
Rauschenberger's avatar
Rauschenberger committed
435
#' This function adjusts RNA-seq expression data for different library sizes.
Rauschenberger's avatar
Rauschenberger committed
436
#' 
Rauschenberger's avatar
Rauschenberger committed
437
438
#' @param x
#' matrix with \eqn{n} rows (samples) and \eqn{p} columns (variables)
Rauschenberger's avatar
Rauschenberger committed
439
440
#' 
#' @examples
Rauschenberger's avatar
Rauschenberger committed
441
442
443
444
#' n <- 5; p <- 10
#' x <- matrix(rnbinom(n=n*p,mu=5,size=1/0.5),nrow=n,ncol=p)
#' x[1,] <- 10*x[1,]
#' adjust.samples(x)
Rauschenberger's avatar
Rauschenberger committed
445
#' 
Rauschenberger's avatar
Rauschenberger committed
446
adjust.samples <- function(x){
Rauschenberger's avatar
Rauschenberger committed
447
448
449
450
451
452
    if(!is.matrix(x)){
        stop("no matrix argument",call.=FALSE)
    }
    if(!is.numeric(x)){
        stop("no numeric argument",call.=FALSE)
    }
Rauschenberger's avatar
Rauschenberger committed
453
    if(!is.integer(x)&&any(round(x)!=x)){
Rauschenberger's avatar
Rauschenberger committed
454
        warning("non-integer values",call.=FALSE)
Rauschenberger's avatar
Rauschenberger committed
455
    }
Rauschenberger's avatar
Rauschenberger committed
456
    if(any(x<0)){
Rauschenberger's avatar
Rauschenberger committed
457
        warning("negative values",call.=FALSE)
Rauschenberger's avatar
Rauschenberger committed
458
    }
Rauschenberger's avatar
Rauschenberger committed
459
460
461
    n <- nrow(x); p <- ncol(x)
    lib.size <- rowSums(x)
    norm.factors <- edgeR::calcNormFactors(object=t(x),lib.size=lib.size)
Rauschenberger's avatar
Rauschenberger committed
462
    gamma <- norm.factors*lib.size/mean(lib.size)
Rauschenberger's avatar
Rauschenberger committed
463
    gamma <- matrix(gamma,nrow=n,ncol=p,byrow=FALSE)
Rauschenberger's avatar
Rauschenberger committed
464
465
    x <- x/gamma
    return(x)
Rauschenberger's avatar
Rauschenberger committed
466
467
468
469
470
471
472
473
474
}

#' @export
#' @title
#' Adjust exon length
#' 
#' @description
#' This function adjusts exon expression data for different exon lengths.
#' 
Rauschenberger's avatar
Rauschenberger committed
475
#' @param x
Rauschenberger's avatar
Rauschenberger committed
476
477
#' matrix with \eqn{n} rows (samples) and \eqn{p} columns (exons)
#' 
Rauschenberger's avatar
Rauschenberger committed
478
#' @param offset
Rauschenberger's avatar
Rauschenberger committed
479
#' exon length\strong{:} vector of length \eqn{p}
Rauschenberger's avatar
Rauschenberger committed
480
#' 
Rauschenberger's avatar
Rauschenberger committed
481
482
#' @param group
#' gene names\strong{:} vector of length \eqn{p}
Rauschenberger's avatar
Rauschenberger committed
483
484
485
486
#' 
#' @examples
#' NA
#' 
Rauschenberger's avatar
Rauschenberger committed
487
adjust.covariates <- function(x,offset,group){
Rauschenberger's avatar
Rauschenberger committed
488
489
490
    if(!is.numeric(x)|!is.matrix(x)){
        stop("Argument \"x\" is no numeric matrix.",call.=FALSE)
    }
Rauschenberger's avatar
Rauschenberger committed
491
492
493
494
495
    if(!is.numeric(offset)|!is.vector(offset)){
        stop("Argument \"offset\" is no numeric vector.",call.=FALSE)
    }
    if(any(offset<0)){
        stop("Argument \"offset\" takes negative values",call.=FALSE)   
Rauschenberger's avatar
Rauschenberger committed
496
    }
Rauschenberger's avatar
Rauschenberger committed
497
498
499
500
    if(!is.character(group)|!is.vector(group)){
        stop("Argument \"group\" is no character vector.",call.=FALSE)
    }
    if(ncol(x)!=length(group)|ncol(x)!=length(offset)){
Rauschenberger's avatar
Rauschenberger committed
501
502
        stop("Contradictory dimensions.",call.=FALSE)
    }
Rauschenberger's avatar
Rauschenberger committed
503
504
    n <- nrow(x); p <- ncol(x); names <- dimnames(x)
    x <- as.numeric(x)
Rauschenberger's avatar
Rauschenberger committed
505
    offset <- rep(offset,each=n)
Rauschenberger's avatar
Rauschenberger committed
506
507
508
509
510
511
512
    group <- strsplit(group,split=",")
    group <- sapply(group,function(x) x[[1]][1])
    group <- rep(group,each=n)
    lmer <- lme4::lmer(x ~ offset + (1|group))
    x <- matrix(stats::residuals(lmer),nrow=n,ncol=p,dimnames=names)
    x <- x-min(x)
    return(x)
Rauschenberger's avatar
Rauschenberger committed
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
}

#' @export
#' @title
#' Search for genes
#' 
#' @description
#' This function retrieves all genes on a chromosome.
#' 
#' @param chr
#' chromosome\strong{:} integer 1-22
#' 
#' @param path
#' path to gene transfer format files (.gtf)
#' 
#' @param release
#' character "NCBI36", "GRCh37", or "GRCh38"
#' 
#' @param build
#' integer 49-91
#' 
#' @examples
#' NA
#' 
Rauschenberger's avatar
Rauschenberger committed
537
538
539
map.genes <- function(chr,path=getwd(),release="GRCh37",build=71){
    
    # check input
Rauschenberger's avatar
Rauschenberger committed
540
    if(!chr %in% 1:22){
Rauschenberger's avatar
Rauschenberger committed
541
542
543
544
545
546
547
548
549
        stop("Invalid argument \"chr\".",call.=FALSE)
    }
    if(!release %in% c("NCBI36","GRCh37","GRCh38")){
        stop("Invalid argument \"release\".",call.=FALSE)
    }
    if(!build %in% 49:91){
        stop("Invalid argument \"build\".",call.=FALSE)
    }
    
Rauschenberger's avatar
Rauschenberger committed
550
551
    file <- paste0("Homo_sapiens.",release,".",build,".gtf")
    if(!file.exists(file.path(path,file))){
Rauschenberger's avatar
Rauschenberger committed
552
553
554
555
556
557
558
559
560
        url <- paste0("ftp://ftp.ensembl.org/pub/release-",build,
                      "/gtf/homo_sapiens/",file,".gz")
        destfile <- file.path(path,paste0(file,".gz"))
        utils::download.file(url=url,destfile=destfile,method="auto")
        R.utils::gunzip(filename=destfile,remove=FALSE,overwrite=TRUE)
    }
    object <- refGenome::ensemblGenome()
    refGenome::basedir(object) <- path
    refGenome::read.gtf(object,filename=file)
Rauschenberger's avatar
Rauschenberger committed
561
562
563
564
565
566
    x <- refGenome::getGenePositions(object=object,by="gene_id")
    x <- x[x$seqid==chr & x$gene_biotype=="protein_coding",]
    x <- x[,c("gene_id","seqid","start","end")]
    rownames(x) <- NULL
    colnames(x)[colnames(x)=="seqid"] <- "chr"
    return(x)
Rauschenberger's avatar
Rauschenberger committed
567
568
569
570
571
572
573
574
575
}

#' @export
#' @title
#' Search for exons
#' 
#' @description
#' This function
#' 
Rauschenberger's avatar
Rauschenberger committed
576
#' @param gene
Rauschenberger's avatar
Rauschenberger committed
577
578
#' gene names\strong{:} vector with one entry per gene,
#' including the gene names
Rauschenberger's avatar
Rauschenberger committed
579
#' 
Rauschenberger's avatar
Rauschenberger committed
580
#' @param exon
Rauschenberger's avatar
Rauschenberger committed
581
582
583
#' exon names\strong{:} vector with one entry per exon,
#' including the corresponding \emph{gene} names
#' (separated by comma if multiple gene names)
Rauschenberger's avatar
Rauschenberger committed
584
585
586
587
588
589
#' 
#' @details
#' The exon names should contain the gene names. For each gene, this function
#' returns the indices of the exons.
#' 
#' @examples
Rauschenberger's avatar
Rauschenberger committed
590
591
592
#' gene <- c("A","B","C")
#' exon <- c("A","A,B","B","B,C","C")
#' map.exons(gene,exon)
Rauschenberger's avatar
Rauschenberger committed
593
#'
Rauschenberger's avatar
Rauschenberger committed
594
595
596
map.exons <- function(gene,exon){
    p <- length(gene)
    x <- list()
Rauschenberger's avatar
Rauschenberger committed
597
598
599
    pb <- utils::txtProgressBar(min=0,max=p,style=3)
    for(i in seq_len(p)){
        utils::setTxtProgressBar(pb=pb,value=i)
Rauschenberger's avatar
Rauschenberger committed
600
601
        which <- as.integer(grep(pattern=gene[i],x=exon))
        x[[i]] <- which
Rauschenberger's avatar
Rauschenberger committed
602
    }
Rauschenberger's avatar
Rauschenberger committed
603
604
605
    close(con=pb)
    names(x) <- gene
    return(x)
Rauschenberger's avatar
Rauschenberger committed
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
}

#' @export
#' @title
#' Search for SNPs
#' 
#' @description
#' This function
#' 
#' @param gene.chr
#' chromosome\strong{:}
#' numeric vector with one entry per gene
#' 
#' @param gene.start
#' start position\strong{:}
#' numeric vector with one entry per gene
#' 
#' @param gene.end
#' end position\strong{:}
#' numeric vector with one entry per gene
#' 
#' @param snp.chr
#' integer 1-22
#' 
#' @param snp.pos
#' chromosomal position of SNPs\strong{:}
#' numeric vector with one entry per SNP
#' 
Rauschenberger's avatar
Rauschenberger committed
634
635
636
637
#' @param dist
#' number of base pairs before start position\strong{:}
#' integer
#' 
Rauschenberger's avatar
Rauschenberger committed
638
#' @examples
Rauschenberger's avatar
Rauschenberger committed
639
640
641
#' gene.chr <- rep(1,times=5)
#' gene.start <- 1:5
#' gene.end <- 2:6
Rauschenberger's avatar
Rauschenberger committed
642
#'
Rauschenberger's avatar
Rauschenberger committed
643
644
645
646
647
648
#' snp.chr <- rep(1,times=100)
#' snp.pos <- seq(from=1,to=4.9,length.out=100)
#' 
#' map.snps(gene.chr,gene.start,gene.end,snp.chr,snp.pos,dist=0)
#'
map.snps <- function(gene.chr,gene.start,gene.end,snp.chr,snp.pos,dist=10^3){
Rauschenberger's avatar
Rauschenberger committed
649
650
651
652
    if(length(gene.chr)!=length(gene.start)|length(gene.chr)!=length(gene.end)){
        stop("Invalid.",call.=FALSE)
    }
    p <- length(gene.start)
Rauschenberger's avatar
Rauschenberger committed
653
    x <- data.frame(from=integer(length=p),to=integer(length=p))
Rauschenberger's avatar
Rauschenberger committed
654
655
656
657
658
    pb <- utils::txtProgressBar(min=0,max=p,style=3)
    for(i in seq_len(p)){ # 
        utils::setTxtProgressBar(pb=pb,value=i)
        chr <- snp.chr == gene.chr[i]
        if(!any(chr)){next}
Rauschenberger's avatar
Rauschenberger committed
659
        start <- snp.pos >= (gene.start[i] - dist)
Rauschenberger's avatar
Rauschenberger committed
660
661
662
        end <- snp.pos <= gene.end[i] + 0
        which <- as.integer(which(chr & start & end))
        if(length(which)==0){next}
Rauschenberger's avatar
Rauschenberger committed
663
664
        x$from[i] <- min(which)
        x$to[i] <- max(which)
Rauschenberger's avatar
Rauschenberger committed
665
666
667
        if(length(which)==1){next}
        if(!all(diff(which)==1)){stop("SNPs are in wrong order!")}
    }
Rauschenberger's avatar
Rauschenberger committed
668
669
    close(con=pb)
    return(x)
Rauschenberger's avatar
Rauschenberger committed
670
671
672
673
}

#' @export
#' @title
Rauschenberger's avatar
Rauschenberger committed
674
#' Drop trivial tests
Rauschenberger's avatar
Rauschenberger committed
675
676
677
678
679
680
#' 
#' @description
#' This function
#' 
#' @param map
#' list with names "genes", "exons", and "snps"
Rauschenberger's avatar
Rauschenberger committed
681
682
#' (output from \code{\link{map.genes}}, \code{\link{map.exons}},
#' and \code{\link{map.snps}})
Rauschenberger's avatar
Rauschenberger committed
683
684
#' 
#' @details
Rauschenberger's avatar
Rauschenberger committed
685
#' This functions drops tests for genes without SNPs or with a single exon.
Rauschenberger's avatar
Rauschenberger committed
686
687
688
689
#' 
#' @examples
#' NA
#' 
Rauschenberger's avatar
Rauschenberger committed
690
drop.trivial <- function(map){
Rauschenberger's avatar
Rauschenberger committed
691
692
693
694
695
696
697
698
699
700
701
    
    # check input
    if(length(map)!=3){
        stop("Unexpected argument length.",call.=FALSE)
    }
    if(any(names(map)!=c("genes","exons","snps"))){
        stop("Unexpected argument names.",call.=FALSE)
    }
    
    # search
    p <- nrow(map$genes)
Rauschenberger's avatar
Rauschenberger committed
702
703
    pass <- rep(NA,times=p)
    pb <- utils::txtProgressBar(min=0,max=p,style=3)
Rauschenberger's avatar
Rauschenberger committed
704
    for(i in seq_len(p)){
Rauschenberger's avatar
Rauschenberger committed
705
706
707
708
709
710
711
712
713
714
        utils::setTxtProgressBar(pb=pb,value=i)
        ys <- map$exons[[i]]
        check <- logical()
        # Exclude genes without SNPs:
        check[1] <- map$snps$from[i] > 0
        check[2] <- map$snps$to[i] > 0
        # Exclude genes with single exon:
        check[3] <- length(ys) > 1
        pass[i] <- all(check)
    }
Rauschenberger's avatar
Rauschenberger committed
715
    close(con=pb)
Rauschenberger's avatar
Rauschenberger committed
716
717
718
719
720
721
722
723
724
    
    # check output
    if(any(pass[map$snps$to==0 & map$snps$from==0])){
        stop("Genes without any SNPs.",call.=FALSE)
    }
    if(any(pass[sapply(map$exons,length)<2])){
        stop("Genes without multiple exons.",call.=FALSE)
    }
    
Rauschenberger's avatar
Rauschenberger committed
725
726
727
728
    map$genes <- map$genes[pass,]
    map$exons <- map$exons[pass]
    map$snps <- map$snps[pass,]
    return(map)
Rauschenberger's avatar
Rauschenberger committed
729
730
731
732
733
}


#' @export
#' @title
Rauschenberger's avatar
Rauschenberger committed
734
#' Conduct single tests
Rauschenberger's avatar
Rauschenberger committed
735
736
737
738
739
740
741
742
743
744
745
746
747
748
#' 
#' @description
#' This function
#' 
#' @param Y
#' exon expression\strong{:}
#' matrix with \eqn{n} rows (samples) and \eqn{p} columns (exons)
#' 
#' @param X
#' SNP genotype\strong{:}
#' matrix with \eqn{n} rows (samples) and \eqn{q} columns (SNPs)
#' 
#' @param map
#' list with names "genes", "exons", and "snps"
Rauschenberger's avatar
Rauschenberger committed
749
750
#' (output from \code{\link{map.genes}}, \code{\link{map.exons}},
#' and \code{\link{map.snps}})
Rauschenberger's avatar
Rauschenberger committed
751
752
753
754
755
756
757
758
759
760
761
762
#' 
#' @param i
#' gene index\strong{:}
#' integer between \eqn{1} and \code{nrow(map$genes)}
#' 
#' @param limit
#' cutoff for rounding \code{p}-values
#' 
#' @param steps
#' size of permutation chunks\strong{:}
#' integer vector
#' 
Rauschenberger's avatar
Rauschenberger committed
763
764
765
#' @param rho
#' correlation\strong{:}
#' numeric vector with values between \eqn{0} and \eqn{1}
Rauschenberger's avatar
Rauschenberger committed
766
#' 
Rauschenberger's avatar
Rauschenberger committed
767
768
769
770
771
772
773
774
#' @details
#' The maximum number of permutations equals \code{sum(steps)}. Permutations is
#' interrupted if at least \code{limit} test statistics for the permuted data
#' are larger than the test statistic for the observed data.
#' 
#' @examples
#' NA
#' 
Rauschenberger's avatar
Rauschenberger committed
775
test.single <- function(Y,X,map,i,limit=NULL,steps=NULL,rho=c(0,0.5,1)){
Rauschenberger's avatar
Rauschenberger committed
776
777
778
    
    if(is.null(limit)){limit <- 5}
    if(is.null(steps)){steps <- c(10,20,20,50)}
Rauschenberger's avatar
Rauschenberger committed
779
    
Rauschenberger's avatar
Rauschenberger committed
780
    # check input
Rauschenberger's avatar
Rauschenberger committed
781
782
783
784
785
786
    if(!is.numeric(limit)){
        stop("Argument \"limit\" is not numeric.",call.=FALSE)
    }
    if(limit<1){
        stop("Argument \"limit\" is below one.",call.=FALSE)
    }
Rauschenberger's avatar
Rauschenberger committed
787
    if(!is.numeric(steps)|!is.vector(steps)){
Rauschenberger's avatar
Rauschenberger committed
788
789
790
791
792
793
        stop("Argument \"steps\" is no numeric vector.",call.=FALSE)
    }
    if(sum(steps)<2){
        stop("Too few permutations \"sum(steps)\".",call.=FALSE)
    }
    
Rauschenberger's avatar
Rauschenberger committed
794
    # extract data
Rauschenberger's avatar
Rauschenberger committed
795
    ys <- map$exons[[i]]
Rauschenberger's avatar
Rauschenberger committed
796
    y <- Y[,ys,drop=FALSE]
Rauschenberger's avatar
Rauschenberger committed
797
    xs <- seq(from=map$snps$from[i],to=map$snps$to[i],by=1)
Rauschenberger's avatar
Rauschenberger committed
798
    x <- X[,xs,drop=FALSE]
Rauschenberger's avatar
Rauschenberger committed
799
    
Rauschenberger's avatar
Rauschenberger committed
800
    # test effects
Rauschenberger's avatar
Rauschenberger committed
801
802
    pvalue <- rep(x=NA,times=length(rho))
    for(j in seq_along(rho)){
Rauschenberger's avatar
Rauschenberger committed
803
804
        tstat <- spliceQTL:::G2.multin(
            dep.data=y,indep.data=x,nperm=steps[1]-1,rho=rho[j])$Sg
Rauschenberger's avatar
Rauschenberger committed
805
        for(nperm in steps[-1]){
Rauschenberger's avatar
Rauschenberger committed
806
807
            tstat <- c(tstat,spliceQTL:::G2.multin(
                dep.data=y,indep.data=x,nperm=nperm,rho=rho[j])$Sg[-1])
Rauschenberger's avatar
Rauschenberger committed
808
            if(sum(tstat >= tstat[1]) >= limit){break}
Rauschenberger's avatar
Rauschenberger committed
809
        }
Rauschenberger's avatar
Rauschenberger committed
810
        pvalue[j] <- mean(tstat >= tstat[1],na.rm=TRUE)
Rauschenberger's avatar
Rauschenberger committed
811
    }
Rauschenberger's avatar
Rauschenberger committed
812

Rauschenberger's avatar
Rauschenberger committed
813
814
815
816
    return(pvalue)
}


Rauschenberger's avatar
Rauschenberger committed
817
818
#' @export
#' @title
Rauschenberger's avatar
Rauschenberger committed
819
#' Conduct multiple tests
Rauschenberger's avatar
Rauschenberger committed
820
821
#' 
#' @description
Rauschenberger's avatar
Rauschenberger committed
822
#' This function ...
Rauschenberger's avatar
Rauschenberger committed
823
824
825
826
827
828
829
830
831
#' 
#' @param Y
#' exon expression\strong{:}
#' matrix with \eqn{n} rows (samples) and \eqn{p} columns (exons)
#' 
#' @param X
#' SNP genotype\strong{:}
#' matrix with \eqn{n} rows (samples) and \eqn{q} columns (SNPs)
#' 
Rauschenberger's avatar
Rauschenberger committed
832
833
834
835
#' @param map
#' list with names "genes", "exons", and "snps"
#' (output from \code{map.genes}, \code{map.exons}, and \code{map.snps})
#' 
Rauschenberger's avatar
Rauschenberger committed
836
837
838
839
840
841
842
843
844
845
846
#' @param rho
#' correlation\strong{:}
#' numeric vector with values between \eqn{0} and \eqn{1}
#' 
#' @details
#' Automatic adjustment of the number of permutations
#' such that Bonferroni-significant p-values are possible.
#' 
#' @examples
#' NA
#' 
Rauschenberger's avatar
Rauschenberger committed
847
848
test.multiple <- function(Y,X,map,rho=c(0,0.5,1)){
    
Rauschenberger's avatar
Rauschenberger committed
849
850
851
    p <- nrow(map$genes)
    
    # permutations
Rauschenberger's avatar
Rauschenberger committed
852
853
854
855
856
857
858
859
860
861
862
863
864
865
    if(FALSE){
        min <- 5
        max <- p/0.05+1
        limit <- ceiling(0.05*max/p)
        base <- 1.5 # adjust sequence
        from <- log(min,base=base)
        to <- log(max,base=base)
        steps <- c(min,diff(unique(round(base^(seq(from=from,to=to,length.out=20))))))
    }
    
    if(TRUE){
        max <- p/0.05+1
        limit <- ceiling(0.05*max/p)
        steps <- diff(limit^seq(from=1,to=log(max)/log(limit),length.out=pmin(p,20)))
Rauschenberger's avatar
Rauschenberger committed
866
        steps <- c(limit,round(steps)) # Or replace "limit" by "minimum # of permutations"!
Rauschenberger's avatar
Rauschenberger committed
867
868
        steps[length(steps)] <- max-sum(steps[-length(steps)])
    }
Rauschenberger's avatar
Rauschenberger committed
869
    
Rauschenberger's avatar
Rauschenberger committed
870
    if(max != sum(steps)){stop("Invalid combination?",call.=FALSE)}
Rauschenberger's avatar
Rauschenberger committed
871
872
873
874
875
    
    # parallel computation
    type <- ifelse(test=.Platform$OS.type=="windows",yes="PSOCK",no="FORK")
    cluster <- parallel::makeCluster(spec=8,type=type)
    parallel::clusterSetRNGStream(cl=cluster,iseed=1)
Rauschenberger's avatar
Rauschenberger committed
876
    parallel::clusterExport(cl=cluster,varlist=c("Y","X","map","limit","steps","rho"),envir=environment())
Rauschenberger's avatar
Rauschenberger committed
877
    start <- Sys.time()
Rauschenberger's avatar
Rauschenberger committed
878
    pvalue <- parallel::parLapply(cl=cluster,X=seq_len(p),fun=function(i) spliceQTL::test.single(Y=Y,X=X,map=map,i=i,limit=limit,steps=steps,rho=rho))
Rauschenberger's avatar
Rauschenberger committed
879
880
881
882
883
    end <- Sys.time()
    parallel::stopCluster(cluster)
    rm(cluster)
    
    # tyding up
Rauschenberger's avatar
Rauschenberger committed
884
    pvalue <- do.call(what=rbind,args=pvalue)
Rauschenberger's avatar
Rauschenberger committed
885
    colnames(pvalue) <- paste0("rho=",rho)
Rauschenberger's avatar
Rauschenberger committed
886
887
    rownames(pvalue) <- map$genes$gene_id
    
Rauschenberger's avatar
Rauschenberger committed
888
    return(pvalue)
Rauschenberger's avatar
Rauschenberger committed
889
890
891
892
}



Rauschenberger's avatar
Rauschenberger committed
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
#--- spliceQTL test functions --------------------------------------------------

# Function: G2.multin
# This is to compute the G2 test statistic under the assumption that the response follows a multinomial distribution
### Input 
### dep data and indep data with samples on the rows and genes on the columns
### grouping: Either a logical value = F or a matrix with a single column and same number of rows as samples. 
###         Column name should be defined.
###         Contains clinical information of the samples. 
###         Should have two groups only. 
### nperm : number of permutations 
### rho: the null correlation between SNPs
### mu: the null correlation between observations corresponding to different exons and different individuals

### Output
### A list containing G2 p.values and G2 test statistics

### Example : G2T = G2(dep.data = cgh, indep.data = expr, grouping=F, stand=TRUE, nperm=1000)
### G2 p.values : G2T$G2p
### G2 TS : G2T$$Sg

Rauschenberger's avatar
Rauschenberger committed
914
G2.multin <- function(dep.data,indep.data,stand=TRUE,nperm=100,grouping=F,rho=0,mu=0){
Rauschenberger's avatar
Rauschenberger committed
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
    
    nperm = nperm
    ## check for the number of samples in dep and indep data
    
    
    if (nrow(dep.data)!=nrow(indep.data)){
        cat("number of samples not same in dep and indep data","\n")
    }
    
    if(any(abs(rho)>1)){
        cat("correlations rho larger than abs(1) are not allowed")
    }
    
    nresponses <- ncol(dep.data)
    ncovariates <- ncol(indep.data)
    ### centering and standardizing the data are not done in this case
    
    #  dep.data = scale(dep.data,center=T,scale=stand)
    #  indep.data = scale(indep.data,center=T,scale=stand)
    
    #### No  grouping of the samples.
    
    ## Calculate U=(I-H)Y and UU', where Y has observations on rows; also tau.mat=X*W.rho*X', 
    ##   where X has observations on rows and variables on columns
    ##  and W.rho = I + rho*(J-I), a square matrix with as many rows as columns in X
    ## NOTE: this formulation uses X with n obs on the rows and m covariates no the columns, so it is the transpose of the first calculations
    nsamples <- nrow(dep.data)
    n.persample <- rowSums(dep.data)
    n.all <- sum(dep.data)
    H <- (1/n.all)*matrix( rep(n.persample,each=nsamples),nrow=nsamples,byrow=T)
    U <- (diag(rep(1,nsamples)) - H) %*% dep.data
    ## Now we may have a vector of values for rho - so we define tau.mat as an array, with the 3rd index corresponding to the value of rho
    tau.mat <- array(0,dim=c(nsamples,nsamples,length(rho)))
    for(xk in 1:length(rho))  
    {  
        if (rho[xk]==0) { tau.mat[,,xk] <- tcrossprod(indep.data) } 
        else { w.rho <- diag(rep(1,ncovariates)) + rho[xk]*(tcrossprod(rep(1,ncovariates)) -diag(rep(1,ncovariates))  )
        tau.mat[,,xk] <- indep.data %*% w.rho %*% t(indep.data)}
        
    }
    ######################################
    ### NOTES ARMIN START ################
    # all(X %*% t(X) == tau.mat[,,1]) # rho = 0 -> TRUE
    # all(X %*% (t(X) %*% X) %*% t(X) == tau.mat[,,1]) # rho = 1
    # plot(as.numeric(X %*% (t(X) %*% X) %*% t(X)),as.numeric(tau.mat[,,1]))
    ### NOTES ARMIN END ##################
    ######################################
    samp_names = 1:nsamples ## this was rownames(indep.data), but I now do this so that rownames do not have to be added to the array tau.mat
    Sg = get.g2stat.multin(U,mu=mu,rho=rho,tau.mat)
    ### now we will have a vector as result, with one value per combination of values of rho and mu
    #
    ### G2 
    ### Permutations
    # When using permutations: only the rows of tau.mat are permuted
    # To check how the permutations can be efficiently applied, see tests_permutation_g2_multin.R
    
    
    perm_samp = matrix(0, nrow=nrow(indep.data), ncol=nperm)   ## generate the permutation matrix
    for(i in 1:ncol(perm_samp)){
        perm_samp[,i] = samp_names[sample(1:length(samp_names),length(samp_names))]
    }
    
    ## permutation starts - recompute tau.mat  (or recompute U each time)
    for (perm in 1:nperm){
        tau.mat.perm = tau.mat[perm_samp[,perm],,,drop=FALSE]          # permute rows
        tau.mat.perm = tau.mat.perm[,perm_samp[,perm],,drop=FALSE]     # permute columns
        
Rauschenberger's avatar
Rauschenberger committed
982
        Sg = c(Sg,spliceQTL:::get.g2stat.multin(U, mu=mu,rho=rho,tau.mat.perm) )
Rauschenberger's avatar
Rauschenberger committed
983
984
985
986
987
988
989
990
991
992
993
994
    }
    
    
    ########################################################################
    
    #### G2 test statistic
    # *** recompute for a vector of values for each case - just reformat the result with as many rows as permutations + 1,
    # and as many columns as combinations of values of rho and mu
    Sg = matrix(Sg,nrow=nperm+1,ncol=length(mu)*length(rho))
    colnames(Sg) <- paste(rep("rho",ncol(Sg)),rep(1:length(rho),each=length(mu)),rep("mu",ncol(Sg)),rep(1:length(mu),length(rho)) )
    
    ### Calculte G2 pval
Rauschenberger's avatar
Rauschenberger committed
995
    G2p =  apply(Sg,2,spliceQTL:::get.pval.percol) 
Rauschenberger's avatar
Rauschenberger committed
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
    
    return (list(perm = perm_samp,G2p = G2p,Sg = Sg))
}

# Function: get.g2stat.multin
# Computes the G2 test statistic given two data matrices, under a multinomial distribution
# This is used internally by the G2 function
# Inputs: 
#  U = (I-H)Y, a n*K matrix where n=number obs and K=number multinomial responses possible
#  tau.mat = X' W.rho X, a n*n matrix : both square, symmetric matrices with an equal number of rows
# Output: test statistic (single value)
# 
Rauschenberger's avatar
Rauschenberger committed
1008
get.g2stat.multin <- function(U, mu, rho, tau.mat){
Rauschenberger's avatar
Rauschenberger committed
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
    g2tstat <- NULL
    for(xk in 1:length(rho))
    {
        for(xj in 1:length(mu))
        {
            if(mu[xj]==0) { g2tstat <- c(g2tstat, sum( diag( tcrossprod(U) %*% tau.mat[,,xk] ) ) )
            } else {
                g2tstat <- c(g2tstat, (1-mu[xj])*sum(diag( tcrossprod(U) %*% tau.mat[,,xk] ) ) + mu[xj]*sum( t(U) %*% tau.mat[,,xk] %*% U )  )
            }
            
        }
    }
    g2tstat
}

# Function: get.pval.percol
# This function takes a vector containing the observed test stat as the first entry, followed by values generated by permutation,
# and computed the estimated p-value
# Input
# x: a vector with length nperm+1
# Output
# the pvalue computed
get.pval.percol <- function(x){
    pval = mean(x[1]<= c(Inf , x[2:length(x)]))
    pval
}