functions.R 34.6 KB
Newer Older
Rauschenberger's avatar
Rauschenberger committed
1

Rauschenberger's avatar
Rauschenberger committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

#' @name spliceQTL-package
#' @md
#' @aliases spliceQTL
#' 
#' @title
#' 
#' Alternative Splicing
#' 
#' @description
#' 
#' This R package includes various functions
#' for applying the global test of alternative splicing.
#' Some functions only work on the virtual machine (see below).
#' 
#' @seealso 
#' 
#' Prepare BBMRI and Geuvadis data:
#' * \code{\link{get.snps.geuvadis}} (not VM)
#' * \code{\link{get.snps.bbmri}} (only VM)
#' * \code{\link{get.exons.geuvadis}} (only VM)
#' * \code{\link{get.exons.bbmri}} (only VM)
#' 
#' Process samples and covariates:
#' * \code{\link{match.samples}}
#' * \code{\link{adjust.samples}}
#' * \code{\link{adjust.covariates}}
#' 
#' Search for exons and SNPs:
#' * \code{\link{map.genes}}
#' * \code{\link{map.exons}}
#' * \code{\link{map.snps}}
#' * \code{\link{drop.trivial}}
#' 
#' Test for alternative splicing:
#' * \code{\link{test.single}}
#' * \code{\link{test.multiple}}
#'
#' @keywords documentation
#' @docType package
#' 
NULL


Rauschenberger's avatar
Rauschenberger committed
46
47
48
49
50
51
52
53
54
55
#' @export
#' @title
#' Get SNP data (Geuvadis)
#' 
#' @description
#' This function transforms SNP data (local machine).
#' 
#' @param chr
#' chromosome: integer \eqn{1-22}
#' 
Rauschenberger's avatar
Rauschenberger committed
56
#' @param data
Rauschenberger's avatar
Rauschenberger committed
57
58
#' local directory for VCF (variant call format)
#' and SDRF (sample and data relationship format) files
Rauschenberger's avatar
Rauschenberger committed
59
#' 
Rauschenberger's avatar
Rauschenberger committed
60
61
62
#' @param path
#' local directory for output
#' 
Rauschenberger's avatar
Rauschenberger committed
63
64
65
#' @examples
#' path <- "C:/Users/a.rauschenbe/Desktop/spliceQTL/data"
#' 
Rauschenberger's avatar
Rauschenberger committed
66
get.snps.geuvadis <- function(chr,data=NULL,path=getwd()){
Rauschenberger's avatar
Rauschenberger committed
67
    
Rauschenberger's avatar
Rauschenberger committed
68
69
70
71
72
73
74
75
76
77
78
79
    if(is.null(data)){
        data <- path
        # download SNP data
        file <- paste0("GEUVADIS.chr",chr,".PH1PH2_465.IMPFRQFILT_BIALLELIC_PH.annotv2.genotypes.vcf.gz")
        url <- paste0("http://www.ebi.ac.uk/arrayexpress/files/E-GEUV-1/genotypes/",file)
        destfile <- file.path(data,file)
        if(!file.exists(destfile)){
            utils::download.file(url=url,destfile=destfile,method="auto")
        }
        # transform with PLINK
        setwd(data)
        system(paste0("plink --vcf GEUVADIS.chr",chr,".PH1PH2_465.IMPFRQFILT_BIALLELIC_PH.annotv2.genotypes.vcf.gz",
Rauschenberger's avatar
Rauschenberger committed
80
                  " --maf 0.05 --geno 0 --make-bed --out snps",chr),invisible=FALSE)
Rauschenberger's avatar
Rauschenberger committed
81
82
83
84
85
86
87
88
        # obtain identifiers
        file <- "E-GEUV-1.sdrf.txt"
        url <- paste("http://www.ebi.ac.uk/arrayexpress/files/E-GEUV-1/",file,sep="")
        destfile <- file.path(data,file)
        if(!file.exists(destfile)){
            utils::download.file(url=url,destfile=destfile,method="auto")
        }
    }
Rauschenberger's avatar
Rauschenberger committed
89
90
    
    # read into R
Rauschenberger's avatar
Rauschenberger committed
91
92
93
    bed <- file.path(data,paste("snps",chr,".bed",sep=""))
    bim <- file.path(data,paste("snps",chr,".bim",sep=""))
    fam <- file.path(data,paste("snps",chr,".fam",sep=""))
Rauschenberger's avatar
Rauschenberger committed
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
    X <- snpStats::read.plink(bed=bed,bim=bim,fam=fam)
    X$fam <- NULL; all(diff(X$map$position) > 0)
    
    # fitler MAF
    maf <- snpStats::col.summary(X$genotypes)$MAF
    cond <- maf >= 0.05
    X$genotypes <- X$genotypes[,cond]
    X$map <- X$map[cond,]
    
    # format
    colnames(X$genotypes) <- paste0(X$map$chromosome,":",X$map$position)
    snps <- methods::as(object=X$genotypes,Class="numeric")
    class(snps) <- "integer"
    
    # change identifiers
Rauschenberger's avatar
Rauschenberger committed
109
    samples <- utils::read.delim(file=file.path(data,"E-GEUV-1.sdrf.txt"))
Rauschenberger's avatar
Rauschenberger committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
    match <- match(rownames(snps),samples$Source.Name)
    rownames(snps) <- samples$Comment.ENA_RUN.[match]
    snps <- snps[!is.na(rownames(snps)),]
    
    save(object=snps,file=file.path(path,paste0("Geuvadis.chr",chr,".RData")))
}


#' @export
#' @title
#' Get SNP data (BBMRI)
#' 
#' @description
#' This function transforms SNP data (virtual machine).
#' 
#' @param chr
#' chromosome: integer \eqn{1-22}
#' 
#' @param biobank
#' character "CODAM", "LL", "LLS", "NTR", "PAN", "RS", or NULL (all)
#' 
#' @param path
#' data directory
#' 
Rauschenberger's avatar
Rauschenberger committed
134
#' @param size
Rauschenberger's avatar
Rauschenberger committed
135
136
#' maximum number of SNPs to read in at once;
#' trade-off between memory usage (low) and speed (high)
Rauschenberger's avatar
Rauschenberger committed
137
#' 
Rauschenberger's avatar
Rauschenberger committed
138
139
140
#' @examples
#' path <- "/virdir/Scratch/arauschenberger/trial"
#'
Rauschenberger's avatar
Rauschenberger committed
141
get.snps.bbmri <- function(chr,biobank=NULL,path=getwd(),size=500*10^3){
Rauschenberger's avatar
Rauschenberger committed
142
143
144
145
146
147
148
149
150
151
152
153

    start <- Sys.time()
    message(rep("-",times=20)," chromosome ",chr," ",rep("-",times=20))
    
    p <- 5*10^6 # (maximum number of SNPs per chromosome, before filtering)
    skip <- seq(from=0,to=p,by=size)
    if(is.null(biobank)){
        study <- c("CODAM","LL","LLS0","LLS1","NTR0","NTR1","PAN","RS")
    } else if(biobank=="LLS"){
        study <- c("LLS0","LLS1")
    } else if(biobank=="NTR"){
        study <- c("NTR0","NTR1")
Rauschenberger's avatar
Rauschenberger committed
154
    } else if(biobank %in% c("CODAM","LL","PAN","RS")){
Rauschenberger's avatar
Rauschenberger committed
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
        study <- biobank
    } else{
        stop("Invalid biobank.",call.=FALSE)
    }
    collect <- matrix(list(),nrow=length(skip),ncol=length(study))
    colnames(collect) <- study
    
    for(i in seq_along(skip)){
        message("\n","chunk ",i,": ",appendLF=FALSE)
        for(j in seq_along(study)){
            message(study[j],"  ",appendLF=FALSE)
            
            # Locating files on virtual machine.
            dir <- study[j]
            if(study[j]=="LLS0"){dir <- "LLS/660Q"}
            if(study[j]=="LLS1"){dir <- "LLS/OmniExpr"}
            if(study[j]=="NTR0"){dir <- "NTR/Affy6"}
            if(study[j]=="NTR1"){dir <- "NTR/GoNL"}
            path0 <- file.path("/mnt/virdir/Backup/RP3_data/HRCv1.1_Imputation",dir)
Rauschenberger's avatar
Rauschenberger committed
174
            path1 <- path
Rauschenberger's avatar
Rauschenberger committed
175
176
177
178
179
            file0 <- paste0("chr",chr,".dose.vcf.gz")
            file1 <- paste0(study[j],".chr",chr,".dose.vcf.gz")
            file2 <- paste0(study[j],".chr",chr,".dose.vcf")
            
            # Decompressing missing files in personal folder.
Rauschenberger's avatar
Rauschenberger committed
180
181
182
183
            #if(!file.exists(file.path(path1,file2))){
            #    file.copy(from=file.path(path0,file0),to=file.path(path1,file1))
            #    R.utils::gunzip(filename=file.path(path1,file1),remove=TRUE,overwrite=TRUE)
            #}
Rauschenberger's avatar
Rauschenberger committed
184
185
            
            # Reading in files.
Rauschenberger's avatar
Rauschenberger committed
186
187
            #vcf <- vcfR::read.vcfR(file=file.path(path1,file2),skip=skip[i],nrows=size,verbose=FALSE)
            vcf <- vcfR::read.vcfR(file=file.path(path0,file0),skip=skip[i],nrows=size,verbose=FALSE)
Rauschenberger's avatar
Rauschenberger committed
188
189
190
191
192
193
194
195
196
197
198
            vcf <- vcf[vcf@fix[,"CHROM"]!="",] # bug fix
            vcf@fix[,"ID"] <- paste0(vcf@fix[,"ID"],"_",seq_len(dim(vcf)["variants"]))
            collect[i,j][[1]] <- vcf
            stop <- dim(vcf)["variants"]==0
            final <- dim(vcf)["variants"]<size
            if(stop){break}
        }
        print(utils::object.size(collect),units="Gb")
        end <- Sys.time()
        if(stop){break}
        
Rauschenberger's avatar
Rauschenberger committed
199
200
        #### start trial ####
        # ONLY RETAINING SNPS WITH COMPLETE DATA
Rauschenberger's avatar
Rauschenberger committed
201
202
        #position <- apply(collect[i,,drop=FALSE],2,function(x) x[[1]]@fix[,"POS"])
        position <- lapply(seq_along(study),function(j) collect[i,j][[1]]@fix[,"POS"])
Rauschenberger's avatar
Rauschenberger committed
203
204
205
206
207
208
209
        common <- Reduce(f=intersect,x=position)
        for(j in seq_along(study)){
            cond <- match(x=common,table=position[[j]])
            collect[i,j][[1]] <- collect[i,j][[1]][cond,]
        }
        #### end trial ####
        
Rauschenberger's avatar
Rauschenberger committed
210
211
212
        # Calculating minor allele frequency.
        num <- numeric(); maf <- list()
        for(j in seq_along(study)){
Rauschenberger's avatar
Rauschenberger committed
213
214
215
            #if(dim(collect[i,1][[1]])["variants"]!=dim(collect[i,j][[1]])["variants"]){
            #    stop("Incompatible dimensions!") # examine this!  
            #}
Rauschenberger's avatar
Rauschenberger committed
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
            num[j] <- dim(collect[i,j][[1]])["gt_cols"] # replace by adjusted sample sizes?
            maf[[j]] <- num[j]*vcfR::maf(collect[i,j][[1]])[,"Frequency"]
        }
        cond <- rowSums(do.call(what="cbind",args=maf))/sum(num)>0.05
        if(sum(cond)==0){if(final){break}else{next}}
        
        # Filtering out genotypes.
        for(j in seq_along(study)){
            gt <- vcfR::extract.gt(collect[i,j][[1]][cond,])
            gt[gt=="0|0"] <- 0
            gt[gt=="0|1"|gt=="1|0"] <- 1
            gt[gt=="1|1"] <- 2
            storage.mode(gt) <- "integer"
            collect[i,j][[1]] <- gt
        }
        
        if(final){break}
    }
    
    # Removing empty rows.
    cond <- apply(collect,1,function(x) all(sapply(x,length)==0))
    collect <- collect[!cond,,drop=FALSE]
Rauschenberger's avatar
Rauschenberger committed
238
    #save(object=collect,file=file.path(path1,paste0("temp.chr",chr,".RData")))
Rauschenberger's avatar
Rauschenberger committed
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
    #load(file.path(path1,paste0("temp.chr",chr,".RData")))
    
    # Fusing all matrices.
    snps <- NULL
    for(i in seq_len(nrow(collect))){
        inner <- NULL
        for(j in seq_len(ncol(collect))){
            add <- collect[i,j][[1]]
            colnames(add) <- paste0(colnames(collect)[j],":",colnames(add))
            inner <- cbind(inner,add)
        }
        snps <- rbind(snps,inner)
    }
    attributes(snps)$time <- end-start
    rownames(snps) <- sapply(strsplit(x=rownames(snps),split="_"),function(x) x[[1]])
    snps <- t(snps)
    
    # Filter samples.
    rownames(snps) <- sub(x=rownames(snps),pattern="LLS0|LLS1",replacement="LLS")
    rownames(snps) <- sub(x=rownames(snps),pattern="NTR0|NTR1",replacement="NTR")
Rauschenberger's avatar
Rauschenberger committed
259

Rauschenberger's avatar
Rauschenberger committed
260
261
262
263
264
    if(is.null(biobank)){
        save(object=snps,file=file.path(path1,paste0("BBMRI.chr",chr,".RData")))
    } else {
        save(object=snps,file=file.path(path1,paste0(biobank,".chr",chr,".RData")))
    }
Rauschenberger's avatar
Rauschenberger committed
265
266
    
    # Remove temporary files.
Rauschenberger's avatar
Rauschenberger committed
267
268
269
    #for(j in seq_along(study)){
    #    file.remove(file.path(path1,paste0(study[j],".chr",chr,".dose.vcf")))
    #}
Rauschenberger's avatar
Rauschenberger committed
270
    
Rauschenberger's avatar
Rauschenberger committed
271
272
273
}


Rauschenberger's avatar
Rauschenberger committed
274
275


Rauschenberger's avatar
Rauschenberger committed
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
#' @export
#' @title
#' Get exon data (Geuvadis)
#' 
#' @description
#' This function transforms exon data (virtual machine).
#' 
#' @param path
#' data directory 
#' 
#' @examples
#' path <- "/virdir/Scratch/arauschenberger/trial"
#' 
get.exons.geuvadis <- function(path=getwd()){

    nrows <- 303544
    file <-"/virdir/Scratch/rmenezes/data_counts.txt"
    exons <- utils::read.table(file=file,header=TRUE,nrows=nrows)
    exons <- exons[exons[,"chr"] %in% 1:22,] # autosomes
    rownames(exons) <- exon_id <- paste0(exons[,"chr"],"_",exons[,"start"],"_",exons[,"end"])
    gene_id <- as.character(exons[,4])
    exons <- t(exons[,-c(1:4)])

    save(list=c("exons","exon_id","gene_id"),file=file.path(path,"Geuvadis.exons.RData"))
}


#' @export
#' @title
#' Get exon data (BBMRI)
#' 
#' @description
#' This function transforms exon data (virtual machine).
#' 
#' @param path
#' data directory 
#' 
#' @examples
#' path <- "/virdir/Scratch/arauschenberger/trial"
#' 
get.exons.bbmri <- function(path=getwd()){
    
    # sample identifiers:
    # (1) loading quality controlled gene expression data 
    # (2) extracting sample identifiers
    # (3) removing identifiers without SNP data
    # (4) translating identifiers
    utils::data(rnaSeqData_ReadCounts_BIOS_cleaned,package="BBMRIomics") # (1)
Rauschenberger's avatar
Rauschenberger committed
324
325
    cd <- SummarizedExperiment::colData(counts)[,c("biobank_id","imputation_id","run_id")] # (2)
    counts <- NULL
Rauschenberger's avatar
Rauschenberger committed
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
    names(cd) <- substr(names(cd),start=1,stop=3) # abbreviate names
    cd <- cd[!is.na(cd$imp),] # (3)
    cd$id <- NA # (4)
    cd$id[cd$bio=="CODAM"] <- sapply(strsplit(x=cd$imp[cd$bio=="CODAM"],split="_"),function(x) x[[2]])
    cd$id[cd$bio=="LL"] <- sub(pattern="1_LLDeep_",replacement="",x=cd$imp[cd$bio=="LL"])
    cd$id[cd$bio=="LLS"] <- sapply(strsplit(x=cd$imp[cd$bio=="LLS"],split="_"),function(x) x[[2]])
    cd$id[cd$bio=="NTR"] <- sapply(strsplit(x=cd$imp[cd$bio=="NTR"],split="_"),function(x) x[[2]])
    cd$id[cd$bio=="PAN"] <- cd$imp[cd$bio=="PAN"]
    cd$id[cd$bio=="RS"] <- sub(pattern="RS1_|RS2_|RS3_",replacement="",x=cd$imp[cd$bio=="RS"])
    
    # Identify individual not with "id" but with "bio:id".
    any(duplicated(cd$id)) # TRUE
    sapply(unique(cd$bio),function(x) any(duplicated(cd$id[x]))) # FALSE
    
    # exon data:
    # (1) loading exon expression data
    # (2) extracting sample identifiers
    # (3) retaining autosomes
    # (4) retaining samples from above
    load("/virdir/Backup/RP3_data/RNASeq/v2.1.3/exon_base/exon_base_counts.RData") # (1)
    colnames(counts) <- sub(pattern=".exon.base.count.gz",replacement="",x=colnames(counts)) # (2)
    autosomes <- sapply(strsplit(x=rownames(counts),split="_"),function(x) x[[1]] %in% 1:22) # (3)
    exons <- counts[autosomes,cd$run] # (3) and (4)
    exon_id <- exon_id[autosomes] # (3)
    gene_id <- gene_id[autosomes] # (3)
    colnames(exons) <- paste0(cd$bio,":",cd$id)
    exons <- t(exons)
    
    save(list=c("exons","exon_id","gene_id"),file=file.path(path,"BBMRI.exons.RData"))
}


Rauschenberger's avatar
Rauschenberger committed
358
359
360
361
362
#' @export
#' @title
#' Prepare data matrices
#' 
#' @description
Rauschenberger's avatar
Rauschenberger committed
363
364
#' This function removes duplicate samples from each matrix,
#' only retains samples appearing in all matrices,
Rauschenberger's avatar
Rauschenberger committed
365
#' and brings samples into the same order.
Rauschenberger's avatar
Rauschenberger committed
366
#' 
Rauschenberger's avatar
Rauschenberger committed
367
#' @param ...
Rauschenberger's avatar
Rauschenberger committed
368
369
#' matrices with samples in the rows and variables in the columns,
#' with sample identifiers as rows names
Rauschenberger's avatar
Rauschenberger committed
370
#' 
Rauschenberger's avatar
Rauschenberger committed
371
372
#' @param message
#' display messages\strong{:} logical
Rauschenberger's avatar
Rauschenberger committed
373
374
#' 
#' @examples
Rauschenberger's avatar
Rauschenberger committed
375
376
377
#' X <- matrix(rnorm(6),nrow=3,ncol=2,dimnames=list(c("A","B","C")))
#' Z <- matrix(rnorm(9),nrow=3,ncol=3,dimnames=list(c("B","A","B")))
#' match.samples(X,Z)
Rauschenberger's avatar
Rauschenberger committed
378
#' 
Rauschenberger's avatar
Rauschenberger committed
379
match.samples <- function(...,message=TRUE){
Rauschenberger's avatar
Rauschenberger committed
380
    
Rauschenberger's avatar
Rauschenberger committed
381
382
    list <- list(...)
    if(length(list)==1 & is.list(list[[1]])){list <- list[[1]]}
Rauschenberger's avatar
Rauschenberger committed
383
384
385
386
387
    if(is.null(names(list))){
        names(list) <- sapply(substitute(list(...))[-1],deparse)
    }
    names <- names(list)
    
Rauschenberger's avatar
Rauschenberger committed
388
    # check input
Rauschenberger's avatar
Rauschenberger committed
389
390
391
    cond <- sapply(list,function(x) !is.matrix(x))
    if(any(cond)){
        stop("Provide matrices!",call.=FALSE)
Rauschenberger's avatar
Rauschenberger committed
392
    }
Rauschenberger's avatar
Rauschenberger committed
393
394
395
    cond <- sapply(list,function(x) is.null(rownames(x)))
    if(any(cond)){
        stop("Provide row names!",call.=FALSE)
Rauschenberger's avatar
Rauschenberger committed
396
397
    }
    
Rauschenberger's avatar
Rauschenberger committed
398
    # remove duplicated samples
Rauschenberger's avatar
Rauschenberger committed
399
    duplic <- lapply(list,function(x) duplicated(rownames(x)))
Rauschenberger's avatar
Rauschenberger committed
400
    for(i in seq_along(list)){
Rauschenberger's avatar
Rauschenberger committed
401
402
403
        number <- round(100*mean(duplic[[i]]))
        if(message){message(number," duplicates in \"",names[i],"\"")}
        list[[i]] <- list[[i]][!duplic[[i]],,drop=FALSE]
Rauschenberger's avatar
Rauschenberger committed
404
    }
Rauschenberger's avatar
Rauschenberger committed
405
406
    
    # retain overlapping samples
Rauschenberger's avatar
Rauschenberger committed
407
408
409
    all <- Reduce(f=intersect,x=lapply(list,rownames))
    for(i in seq_along(list)){
        percent <- round(100*mean(rownames(list[[i]]) %in% all))
Rauschenberger's avatar
Rauschenberger committed
410
        if(message){message(percent,"% overlap in \"",names[i],"\"")}
Rauschenberger's avatar
Rauschenberger committed
411
        list[[i]] <- list[[i]][all,,drop=FALSE]
Rauschenberger's avatar
Rauschenberger committed
412
    }
Rauschenberger's avatar
Rauschenberger committed
413
414
    
    # check output
Rauschenberger's avatar
Rauschenberger committed
415
416
    cond <- sapply(list,function(x) any(duplicated(rownames(x))))
    if(any(cond)){
Rauschenberger's avatar
Rauschenberger committed
417
418
        stop("Duplicate samples!",call.=FALSE)
    }
Rauschenberger's avatar
Rauschenberger committed
419
420
    cond <- sapply(list,function(x) nrow(x)!=nrow(list[[1]]))
    if(any(cond)){
Rauschenberger's avatar
Rauschenberger committed
421
422
        stop("Different sample sizes!",call.=FALSE)
    }
Rauschenberger's avatar
Rauschenberger committed
423
424
    cond <- sapply(list,function(x) any(rownames(x)!=rownames(list[[1]])))
    if(any(cond)){
Rauschenberger's avatar
Rauschenberger committed
425
426
427
        stop("Different sample names!",call.=FALSE)
    }
    
Rauschenberger's avatar
Rauschenberger committed
428
    return(list)
Rauschenberger's avatar
Rauschenberger committed
429
430
431
432
433
434
435
}

#' @export
#' @title
#' Adjust library sizes
#' 
#' @description
Rauschenberger's avatar
Rauschenberger committed
436
#' This function adjusts RNA-seq expression data for different library sizes.
Rauschenberger's avatar
Rauschenberger committed
437
#' 
Rauschenberger's avatar
Rauschenberger committed
438
439
#' @param x
#' matrix with \eqn{n} rows (samples) and \eqn{p} columns (variables)
Rauschenberger's avatar
Rauschenberger committed
440
441
#' 
#' @examples
Rauschenberger's avatar
Rauschenberger committed
442
443
444
445
#' n <- 5; p <- 10
#' x <- matrix(rnbinom(n=n*p,mu=5,size=1/0.5),nrow=n,ncol=p)
#' x[1,] <- 10*x[1,]
#' adjust.samples(x)
Rauschenberger's avatar
Rauschenberger committed
446
#' 
Rauschenberger's avatar
Rauschenberger committed
447
adjust.samples <- function(x){
Rauschenberger's avatar
Rauschenberger committed
448
449
450
451
452
453
    if(!is.matrix(x)){
        stop("no matrix argument",call.=FALSE)
    }
    if(!is.numeric(x)){
        stop("no numeric argument",call.=FALSE)
    }
Rauschenberger's avatar
Rauschenberger committed
454
    if(!is.integer(x)&&any(round(x)!=x)){
Rauschenberger's avatar
Rauschenberger committed
455
        warning("non-integer values",call.=FALSE)
Rauschenberger's avatar
Rauschenberger committed
456
    }
Rauschenberger's avatar
Rauschenberger committed
457
    if(any(x<0)){
Rauschenberger's avatar
Rauschenberger committed
458
        warning("negative values",call.=FALSE)
Rauschenberger's avatar
Rauschenberger committed
459
    }
Rauschenberger's avatar
Rauschenberger committed
460
461
462
    n <- nrow(x); p <- ncol(x)
    lib.size <- rowSums(x)
    norm.factors <- edgeR::calcNormFactors(object=t(x),lib.size=lib.size)
Rauschenberger's avatar
Rauschenberger committed
463
    gamma <- norm.factors*lib.size/mean(lib.size)
Rauschenberger's avatar
Rauschenberger committed
464
    gamma <- matrix(gamma,nrow=n,ncol=p,byrow=FALSE)
Rauschenberger's avatar
Rauschenberger committed
465
466
    x <- x/gamma
    return(x)
Rauschenberger's avatar
Rauschenberger committed
467
468
469
470
471
472
473
474
475
}

#' @export
#' @title
#' Adjust exon length
#' 
#' @description
#' This function adjusts exon expression data for different exon lengths.
#' 
Rauschenberger's avatar
Rauschenberger committed
476
#' @param x
Rauschenberger's avatar
Rauschenberger committed
477
478
#' matrix with \eqn{n} rows (samples) and \eqn{p} columns (exons)
#' 
Rauschenberger's avatar
Rauschenberger committed
479
#' @param offset
Rauschenberger's avatar
Rauschenberger committed
480
#' exon length\strong{:} vector of length \eqn{p}
Rauschenberger's avatar
Rauschenberger committed
481
#' 
Rauschenberger's avatar
Rauschenberger committed
482
483
#' @param group
#' gene names\strong{:} vector of length \eqn{p}
Rauschenberger's avatar
Rauschenberger committed
484
485
486
487
#' 
#' @examples
#' NA
#' 
Rauschenberger's avatar
Rauschenberger committed
488
adjust.covariates <- function(x,offset,group){
Rauschenberger's avatar
Rauschenberger committed
489
490
491
    if(!is.numeric(x)|!is.matrix(x)){
        stop("Argument \"x\" is no numeric matrix.",call.=FALSE)
    }
Rauschenberger's avatar
Rauschenberger committed
492
493
494
495
496
    if(!is.numeric(offset)|!is.vector(offset)){
        stop("Argument \"offset\" is no numeric vector.",call.=FALSE)
    }
    if(any(offset<0)){
        stop("Argument \"offset\" takes negative values",call.=FALSE)   
Rauschenberger's avatar
Rauschenberger committed
497
    }
Rauschenberger's avatar
Rauschenberger committed
498
499
500
501
    if(!is.character(group)|!is.vector(group)){
        stop("Argument \"group\" is no character vector.",call.=FALSE)
    }
    if(ncol(x)!=length(group)|ncol(x)!=length(offset)){
Rauschenberger's avatar
Rauschenberger committed
502
503
        stop("Contradictory dimensions.",call.=FALSE)
    }
Rauschenberger's avatar
Rauschenberger committed
504
505
    n <- nrow(x); p <- ncol(x); names <- dimnames(x)
    x <- as.numeric(x)
Rauschenberger's avatar
Rauschenberger committed
506
    offset <- rep(offset,each=n)
Rauschenberger's avatar
Rauschenberger committed
507
508
509
510
511
512
513
    group <- strsplit(group,split=",")
    group <- sapply(group,function(x) x[[1]][1])
    group <- rep(group,each=n)
    lmer <- lme4::lmer(x ~ offset + (1|group))
    x <- matrix(stats::residuals(lmer),nrow=n,ncol=p,dimnames=names)
    x <- x-min(x)
    return(x)
Rauschenberger's avatar
Rauschenberger committed
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
}

#' @export
#' @title
#' Search for genes
#' 
#' @description
#' This function retrieves all genes on a chromosome.
#' 
#' @param chr
#' chromosome\strong{:} integer 1-22
#' 
#' @param path
#' path to gene transfer format files (.gtf)
#' 
#' @param release
#' character "NCBI36", "GRCh37", or "GRCh38"
#' 
#' @param build
#' integer 49-91
#' 
#' @examples
#' NA
#' 
Rauschenberger's avatar
Rauschenberger committed
538
539
540
map.genes <- function(chr,path=getwd(),release="GRCh37",build=71){
    
    # check input
Rauschenberger's avatar
Rauschenberger committed
541
    if(!chr %in% 1:22){
Rauschenberger's avatar
Rauschenberger committed
542
543
544
545
546
547
548
549
550
        stop("Invalid argument \"chr\".",call.=FALSE)
    }
    if(!release %in% c("NCBI36","GRCh37","GRCh38")){
        stop("Invalid argument \"release\".",call.=FALSE)
    }
    if(!build %in% 49:91){
        stop("Invalid argument \"build\".",call.=FALSE)
    }
    
Rauschenberger's avatar
Rauschenberger committed
551
552
    file <- paste0("Homo_sapiens.",release,".",build,".gtf")
    if(!file.exists(file.path(path,file))){
Rauschenberger's avatar
Rauschenberger committed
553
554
555
556
557
558
559
560
561
        url <- paste0("ftp://ftp.ensembl.org/pub/release-",build,
                      "/gtf/homo_sapiens/",file,".gz")
        destfile <- file.path(path,paste0(file,".gz"))
        utils::download.file(url=url,destfile=destfile,method="auto")
        R.utils::gunzip(filename=destfile,remove=FALSE,overwrite=TRUE)
    }
    object <- refGenome::ensemblGenome()
    refGenome::basedir(object) <- path
    refGenome::read.gtf(object,filename=file)
Rauschenberger's avatar
Rauschenberger committed
562
563
564
565
566
567
    x <- refGenome::getGenePositions(object=object,by="gene_id")
    x <- x[x$seqid==chr & x$gene_biotype=="protein_coding",]
    x <- x[,c("gene_id","seqid","start","end")]
    rownames(x) <- NULL
    colnames(x)[colnames(x)=="seqid"] <- "chr"
    return(x)
Rauschenberger's avatar
Rauschenberger committed
568
569
570
571
572
573
574
575
576
}

#' @export
#' @title
#' Search for exons
#' 
#' @description
#' This function
#' 
Rauschenberger's avatar
Rauschenberger committed
577
#' @param gene
Rauschenberger's avatar
Rauschenberger committed
578
579
#' gene names\strong{:} vector with one entry per gene,
#' including the gene names
Rauschenberger's avatar
Rauschenberger committed
580
#' 
Rauschenberger's avatar
Rauschenberger committed
581
#' @param exon
Rauschenberger's avatar
Rauschenberger committed
582
583
584
#' exon names\strong{:} vector with one entry per exon,
#' including the corresponding \emph{gene} names
#' (separated by comma if multiple gene names)
Rauschenberger's avatar
Rauschenberger committed
585
586
587
588
589
590
#' 
#' @details
#' The exon names should contain the gene names. For each gene, this function
#' returns the indices of the exons.
#' 
#' @examples
Rauschenberger's avatar
Rauschenberger committed
591
592
593
#' gene <- c("A","B","C")
#' exon <- c("A","A,B","B","B,C","C")
#' map.exons(gene,exon)
Rauschenberger's avatar
Rauschenberger committed
594
#'
Rauschenberger's avatar
Rauschenberger committed
595
596
597
map.exons <- function(gene,exon){
    p <- length(gene)
    x <- list()
Rauschenberger's avatar
Rauschenberger committed
598
599
600
    pb <- utils::txtProgressBar(min=0,max=p,style=3)
    for(i in seq_len(p)){
        utils::setTxtProgressBar(pb=pb,value=i)
Rauschenberger's avatar
Rauschenberger committed
601
602
        which <- as.integer(grep(pattern=gene[i],x=exon))
        x[[i]] <- which
Rauschenberger's avatar
Rauschenberger committed
603
    }
Rauschenberger's avatar
Rauschenberger committed
604
605
606
    close(con=pb)
    names(x) <- gene
    return(x)
Rauschenberger's avatar
Rauschenberger committed
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
}

#' @export
#' @title
#' Search for SNPs
#' 
#' @description
#' This function
#' 
#' @param gene.chr
#' chromosome\strong{:}
#' numeric vector with one entry per gene
#' 
#' @param gene.start
#' start position\strong{:}
#' numeric vector with one entry per gene
#' 
#' @param gene.end
#' end position\strong{:}
#' numeric vector with one entry per gene
#' 
#' @param snp.chr
#' integer 1-22
#' 
#' @param snp.pos
#' chromosomal position of SNPs\strong{:}
#' numeric vector with one entry per SNP
#' 
Rauschenberger's avatar
Rauschenberger committed
635
636
637
638
#' @param dist
#' number of base pairs before start position\strong{:}
#' integer
#' 
Rauschenberger's avatar
Rauschenberger committed
639
#' @examples
Rauschenberger's avatar
Rauschenberger committed
640
641
642
#' gene.chr <- rep(1,times=5)
#' gene.start <- 1:5
#' gene.end <- 2:6
Rauschenberger's avatar
Rauschenberger committed
643
#'
Rauschenberger's avatar
Rauschenberger committed
644
645
646
647
648
649
#' snp.chr <- rep(1,times=100)
#' snp.pos <- seq(from=1,to=4.9,length.out=100)
#' 
#' map.snps(gene.chr,gene.start,gene.end,snp.chr,snp.pos,dist=0)
#'
map.snps <- function(gene.chr,gene.start,gene.end,snp.chr,snp.pos,dist=10^3){
Rauschenberger's avatar
Rauschenberger committed
650
651
652
    if(length(gene.chr)!=length(gene.start)|length(gene.chr)!=length(gene.end)){
        stop("Invalid.",call.=FALSE)
    }
Rauschenberger's avatar
Rauschenberger committed
653
654
655
    if(!is.numeric(snp.chr)|!is.numeric(snp.pos)){
        stop("Invalid.",call.=FALSE)
    }
Rauschenberger's avatar
Rauschenberger committed
656
    p <- length(gene.start)
Rauschenberger's avatar
Rauschenberger committed
657
    x <- data.frame(from=integer(length=p),to=integer(length=p))
Rauschenberger's avatar
Rauschenberger committed
658
659
660
661
662
    pb <- utils::txtProgressBar(min=0,max=p,style=3)
    for(i in seq_len(p)){ # 
        utils::setTxtProgressBar(pb=pb,value=i)
        chr <- snp.chr == gene.chr[i]
        if(!any(chr)){next}
Rauschenberger's avatar
Rauschenberger committed
663
        start <- snp.pos >= (gene.start[i] - dist)
Rauschenberger's avatar
Rauschenberger committed
664
665
666
        end <- snp.pos <= gene.end[i] + 0
        which <- as.integer(which(chr & start & end))
        if(length(which)==0){next}
Rauschenberger's avatar
Rauschenberger committed
667
668
        x$from[i] <- min(which)
        x$to[i] <- max(which)
Rauschenberger's avatar
Rauschenberger committed
669
670
671
        if(length(which)==1){next}
        if(!all(diff(which)==1)){stop("SNPs are in wrong order!")}
    }
Rauschenberger's avatar
Rauschenberger committed
672
673
    close(con=pb)
    return(x)
Rauschenberger's avatar
Rauschenberger committed
674
675
676
677
}

#' @export
#' @title
Rauschenberger's avatar
Rauschenberger committed
678
#' Drop trivial tests
Rauschenberger's avatar
Rauschenberger committed
679
680
681
682
683
684
#' 
#' @description
#' This function
#' 
#' @param map
#' list with names "genes", "exons", and "snps"
Rauschenberger's avatar
Rauschenberger committed
685
686
#' (output from \code{\link{map.genes}}, \code{\link{map.exons}},
#' and \code{\link{map.snps}})
Rauschenberger's avatar
Rauschenberger committed
687
688
#' 
#' @details
Rauschenberger's avatar
Rauschenberger committed
689
#' This functions drops tests for genes without SNPs or with a single exon.
Rauschenberger's avatar
Rauschenberger committed
690
691
692
693
#' 
#' @examples
#' NA
#' 
Rauschenberger's avatar
Rauschenberger committed
694
drop.trivial <- function(map){
Rauschenberger's avatar
Rauschenberger committed
695
696
697
698
699
700
701
702
703
704
705
    
    # check input
    if(length(map)!=3){
        stop("Unexpected argument length.",call.=FALSE)
    }
    if(any(names(map)!=c("genes","exons","snps"))){
        stop("Unexpected argument names.",call.=FALSE)
    }
    
    # search
    p <- nrow(map$genes)
Rauschenberger's avatar
Rauschenberger committed
706
707
    pass <- rep(NA,times=p)
    pb <- utils::txtProgressBar(min=0,max=p,style=3)
Rauschenberger's avatar
Rauschenberger committed
708
    for(i in seq_len(p)){
Rauschenberger's avatar
Rauschenberger committed
709
710
711
712
713
714
715
716
717
718
        utils::setTxtProgressBar(pb=pb,value=i)
        ys <- map$exons[[i]]
        check <- logical()
        # Exclude genes without SNPs:
        check[1] <- map$snps$from[i] > 0
        check[2] <- map$snps$to[i] > 0
        # Exclude genes with single exon:
        check[3] <- length(ys) > 1
        pass[i] <- all(check)
    }
Rauschenberger's avatar
Rauschenberger committed
719
    close(con=pb)
Rauschenberger's avatar
Rauschenberger committed
720
721
722
723
724
725
726
727
728
    
    # check output
    if(any(pass[map$snps$to==0 & map$snps$from==0])){
        stop("Genes without any SNPs.",call.=FALSE)
    }
    if(any(pass[sapply(map$exons,length)<2])){
        stop("Genes without multiple exons.",call.=FALSE)
    }
    
Rauschenberger's avatar
Rauschenberger committed
729
730
731
732
    map$genes <- map$genes[pass,]
    map$exons <- map$exons[pass]
    map$snps <- map$snps[pass,]
    return(map)
Rauschenberger's avatar
Rauschenberger committed
733
734
735
736
737
}


#' @export
#' @title
Rauschenberger's avatar
Rauschenberger committed
738
#' Conduct single test
Rauschenberger's avatar
Rauschenberger committed
739
740
#' 
#' @description
Rauschenberger's avatar
Rauschenberger committed
741
#' This function tests for alternative splicing.
Rauschenberger's avatar
Rauschenberger committed
742
743
744
745
746
747
748
749
750
751
752
#' 
#' @param Y
#' exon expression\strong{:}
#' matrix with \eqn{n} rows (samples) and \eqn{p} columns (exons)
#' 
#' @param X
#' SNP genotype\strong{:}
#' matrix with \eqn{n} rows (samples) and \eqn{q} columns (SNPs)
#' 
#' @param map
#' list with names "genes", "exons", and "snps"
Rauschenberger's avatar
Rauschenberger committed
753
754
#' (output from \code{\link{map.genes}}, \code{\link{map.exons}},
#' and \code{\link{map.snps}})
Rauschenberger's avatar
Rauschenberger committed
755
756
757
758
759
760
761
762
763
764
765
766
#' 
#' @param i
#' gene index\strong{:}
#' integer between \eqn{1} and \code{nrow(map$genes)}
#' 
#' @param limit
#' cutoff for rounding \code{p}-values
#' 
#' @param steps
#' size of permutation chunks\strong{:}
#' integer vector
#' 
Rauschenberger's avatar
Rauschenberger committed
767
768
769
#' @param rho
#' correlation\strong{:}
#' numeric vector with values between \eqn{0} and \eqn{1}
Rauschenberger's avatar
Rauschenberger committed
770
#' 
Rauschenberger's avatar
Rauschenberger committed
771
772
773
774
775
776
777
778
#' @details
#' The maximum number of permutations equals \code{sum(steps)}. Permutations is
#' interrupted if at least \code{limit} test statistics for the permuted data
#' are larger than the test statistic for the observed data.
#' 
#' @examples
#' NA
#' 
Rauschenberger's avatar
Rauschenberger committed
779
test.single <- function(Y,X,map,i,limit=NULL,steps=NULL,rho=c(0,0.5,1)){
Rauschenberger's avatar
Rauschenberger committed
780
781
782
    
    if(is.null(limit)){limit <- 5}
    if(is.null(steps)){steps <- c(10,20,20,50)}
Rauschenberger's avatar
Rauschenberger committed
783
    
Rauschenberger's avatar
Rauschenberger committed
784
    # check input
Rauschenberger's avatar
Rauschenberger committed
785
786
787
788
789
790
    if(!is.numeric(limit)){
        stop("Argument \"limit\" is not numeric.",call.=FALSE)
    }
    if(limit<1){
        stop("Argument \"limit\" is below one.",call.=FALSE)
    }
Rauschenberger's avatar
Rauschenberger committed
791
    if(!is.numeric(steps)|!is.vector(steps)){
Rauschenberger's avatar
Rauschenberger committed
792
793
794
795
796
797
        stop("Argument \"steps\" is no numeric vector.",call.=FALSE)
    }
    if(sum(steps)<2){
        stop("Too few permutations \"sum(steps)\".",call.=FALSE)
    }
    
Rauschenberger's avatar
Rauschenberger committed
798
    # extract data
Rauschenberger's avatar
Rauschenberger committed
799
    ys <- map$exons[[i]]
Rauschenberger's avatar
Rauschenberger committed
800
    y <- Y[,ys,drop=FALSE]
Rauschenberger's avatar
Rauschenberger committed
801
    xs <- seq(from=map$snps$from[i],to=map$snps$to[i],by=1)
Rauschenberger's avatar
Rauschenberger committed
802
803
    x <- X[,xs,drop=FALSE]
    rm(Y,X); silent <- gc()
Rauschenberger's avatar
Rauschenberger committed
804
    
Rauschenberger's avatar
Rauschenberger committed
805
    # test effects
Rauschenberger's avatar
Rauschenberger committed
806
807
    pvalue <- rep(x=NA,times=length(rho))
    for(j in seq_along(rho)){
Rauschenberger's avatar
Rauschenberger committed
808
809
        tstat <- spliceQTL:::G2.multin(
            dep.data=y,indep.data=x,nperm=steps[1]-1,rho=rho[j])$Sg
Rauschenberger's avatar
Rauschenberger committed
810
        for(nperm in steps[-1]){
Rauschenberger's avatar
Rauschenberger committed
811
812
            tstat <- c(tstat,spliceQTL:::G2.multin(
                dep.data=y,indep.data=x,nperm=nperm,rho=rho[j])$Sg[-1])
Rauschenberger's avatar
Rauschenberger committed
813
            if(sum(tstat >= tstat[1]) >= limit){break}
Rauschenberger's avatar
Rauschenberger committed
814
        }
Rauschenberger's avatar
Rauschenberger committed
815
        pvalue[j] <- mean(tstat >= tstat[1],na.rm=TRUE)
Rauschenberger's avatar
Rauschenberger committed
816
    }
Rauschenberger's avatar
Rauschenberger committed
817

Rauschenberger's avatar
Rauschenberger committed
818
819
820
    return(pvalue)
}

Rauschenberger's avatar
Rauschenberger committed
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
# test.trial <- function(y,x,limit=NULL,steps=NULL,rho=c(0,0.5,1)){
#     
#     if(is.null(limit)){limit <- 5}
#     if(is.null(steps)){steps <- c(10,20,20,50)}
#     
#     # check input
#     if(!is.numeric(limit)){
#         stop("Argument \"limit\" is not numeric.",call.=FALSE)
#     }
#     if(limit<1){
#         stop("Argument \"limit\" is below one.",call.=FALSE)
#     }
#     if(!is.numeric(steps)|!is.vector(steps)){
#         stop("Argument \"steps\" is no numeric vector.",call.=FALSE)
#     }
#     if(sum(steps)<2){
#         stop("Too few permutations \"sum(steps)\".",call.=FALSE)
#     }
#     
#     # test effects
#     pvalue <- rep(x=NA,times=length(rho))
#     for(j in seq_along(rho)){
#         tstat <- spliceQTL:::G2.multin(
#             dep.data=y,indep.data=x,nperm=steps[1]-1,rho=rho[j])$Sg
#         for(nperm in steps[-1]){
#             tstat <- c(tstat,spliceQTL:::G2.multin(
#                 dep.data=y,indep.data=x,nperm=nperm,rho=rho[j])$Sg[-1])
#             if(sum(tstat >= tstat[1]) >= limit){break}
#         }
#         pvalue[j] <- mean(tstat >= tstat[1],na.rm=TRUE)
#     }
#     
#     return(pvalue)
# }
Rauschenberger's avatar
Rauschenberger committed
855

Rauschenberger's avatar
Rauschenberger committed
856
857
#' @export
#' @title
Rauschenberger's avatar
Rauschenberger committed
858
#' Conduct multiple tests
Rauschenberger's avatar
Rauschenberger committed
859
860
#' 
#' @description
Rauschenberger's avatar
Rauschenberger committed
861
#' This function tests for alternative splicing.
Rauschenberger's avatar
Rauschenberger committed
862
863
864
865
866
867
868
869
870
#' 
#' @param Y
#' exon expression\strong{:}
#' matrix with \eqn{n} rows (samples) and \eqn{p} columns (exons)
#' 
#' @param X
#' SNP genotype\strong{:}
#' matrix with \eqn{n} rows (samples) and \eqn{q} columns (SNPs)
#' 
Rauschenberger's avatar
Rauschenberger committed
871
872
873
874
#' @param map
#' list with names "genes", "exons", and "snps"
#' (output from \code{map.genes}, \code{map.exons}, and \code{map.snps})
#' 
Rauschenberger's avatar
Rauschenberger committed
875
876
877
878
#' @param rho
#' correlation\strong{:}
#' numeric vector with values between \eqn{0} and \eqn{1}
#' 
Rauschenberger's avatar
Rauschenberger committed
879
880
881
882
#' @param spec
#' number of cores\strong{:}
#' positive integer
#' 
Rauschenberger's avatar
Rauschenberger committed
883
884
885
886
887
888
889
#' @details
#' Automatic adjustment of the number of permutations
#' such that Bonferroni-significant p-values are possible.
#' 
#' @examples
#' NA
#' 
Rauschenberger's avatar
Rauschenberger committed
890
test.multiple <- function(Y,X,map,rho=c(0,0.5,1),spec=1){
Rauschenberger's avatar
Rauschenberger committed
891
    
Rauschenberger's avatar
Rauschenberger committed
892
893
894
    p <- nrow(map$genes)
    
    # permutations
Rauschenberger's avatar
Rauschenberger committed
895
896
897
898
899
900
901
902
903
904
905
906
907
908
    if(FALSE){
        min <- 5
        max <- p/0.05+1
        limit <- ceiling(0.05*max/p)
        base <- 1.5 # adjust sequence
        from <- log(min,base=base)
        to <- log(max,base=base)
        steps <- c(min,diff(unique(round(base^(seq(from=from,to=to,length.out=20))))))
    }
    
    if(TRUE){
        max <- p/0.05+1
        limit <- ceiling(0.05*max/p)
        steps <- diff(limit^seq(from=1,to=log(max)/log(limit),length.out=pmin(p,20)))
Rauschenberger's avatar
Rauschenberger committed
909
        steps <- c(limit,round(steps)) # Or replace "limit" by "minimum # of permutations"!
Rauschenberger's avatar
Rauschenberger committed
910
911
        steps[length(steps)] <- max-sum(steps[-length(steps)])
    }
Rauschenberger's avatar
Rauschenberger committed
912
    
Rauschenberger's avatar
Rauschenberger committed
913
    if(max != sum(steps)){stop("Invalid combination?",call.=FALSE)}
Rauschenberger's avatar
Rauschenberger committed
914
    
Rauschenberger's avatar
Rauschenberger committed
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
    if(spec==1){
        pvalue <- lapply(X=seq_len(p),FUN=function(i) spliceQTL::test.single(Y=Y,X=X,map=map,i=i,limit=limit,steps=steps,rho=rho))
    } else {
        
        ## parallel computation
        type <- ifelse(test=.Platform$OS.type=="windows",yes="PSOCK",no="FORK")
        cluster <- parallel::makeCluster(spec=spec,type=type)
        parallel::clusterSetRNGStream(cl=cluster,iseed=1)
        parallel::clusterExport(cl=cluster,varlist=c("Y","X","map","limit","steps","rho"),envir=environment())
        parallel::clusterEvalQ(cl=cluster,library(spliceQTL,lib.loc="/virdir/Scratch/arauschenberger/library"))
        pvalue <- parallel::parLapply(cl=cluster,X=seq_len(p),fun=function(i) test.single(Y=Y,X=X,map=map,i=i,limit=limit,steps=steps,rho=rho))
        #pvalue <- parallel::parLapply(cl=cluster,X=seq_len(p),fun=function(i) test.trial(y=Y[,map$exons[[i]],drop=FALSE],x=X[,seq(from=map$snps$from[i],to=map$snps$to[i],by=1),drop=FALSE],limit=limit,steps=steps,rho=rho))
        parallel::stopCluster(cluster)
        #rm(cluster)
        
    }
Rauschenberger's avatar
Rauschenberger committed
931
    
Rauschenberger's avatar
Rauschenberger committed
932
    ## trial
Rauschenberger's avatar
Rauschenberger committed
933
934
    #pvalue <- parallel::mclapply(X=seq_len(p),FUN=function(i) test.single(Y=Y,X=X,map=map,i=i,limit=limit,steps=steps,rho=rho))
    
Rauschenberger's avatar
Rauschenberger committed
935

Rauschenberger's avatar
Rauschenberger committed
936
    # tyding up
Rauschenberger's avatar
Rauschenberger committed
937
    pvalue <- do.call(what=rbind,args=pvalue)
Rauschenberger's avatar
Rauschenberger committed
938
    colnames(pvalue) <- paste0("rho=",rho)
Rauschenberger's avatar
Rauschenberger committed
939
940
    rownames(pvalue) <- map$genes$gene_id
    
Rauschenberger's avatar
Rauschenberger committed
941
    return(pvalue)
Rauschenberger's avatar
Rauschenberger committed
942
943
944
945
}



Rauschenberger's avatar
Rauschenberger committed
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
#--- spliceQTL test functions --------------------------------------------------

# Function: G2.multin
# This is to compute the G2 test statistic under the assumption that the response follows a multinomial distribution
### Input 
### dep data and indep data with samples on the rows and genes on the columns
### grouping: Either a logical value = F or a matrix with a single column and same number of rows as samples. 
###         Column name should be defined.
###         Contains clinical information of the samples. 
###         Should have two groups only. 
### nperm : number of permutations 
### rho: the null correlation between SNPs
### mu: the null correlation between observations corresponding to different exons and different individuals

### Output
### A list containing G2 p.values and G2 test statistics

### Example : G2T = G2(dep.data = cgh, indep.data = expr, grouping=F, stand=TRUE, nperm=1000)
### G2 p.values : G2T$G2p
### G2 TS : G2T$$Sg

Rauschenberger's avatar
Rauschenberger committed
967
G2.multin <- function(dep.data,indep.data,stand=TRUE,nperm=100,grouping=F,rho=0,mu=0){
Rauschenberger's avatar
Rauschenberger committed
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
    
    nperm = nperm
    ## check for the number of samples in dep and indep data
    
    
    if (nrow(dep.data)!=nrow(indep.data)){
        cat("number of samples not same in dep and indep data","\n")
    }
    
    if(any(abs(rho)>1)){
        cat("correlations rho larger than abs(1) are not allowed")
    }
    
    nresponses <- ncol(dep.data)
    ncovariates <- ncol(indep.data)
    ### centering and standardizing the data are not done in this case
    
    #  dep.data = scale(dep.data,center=T,scale=stand)
    #  indep.data = scale(indep.data,center=T,scale=stand)
    
    #### No  grouping of the samples.
    
    ## Calculate U=(I-H)Y and UU', where Y has observations on rows; also tau.mat=X*W.rho*X', 
    ##   where X has observations on rows and variables on columns
    ##  and W.rho = I + rho*(J-I), a square matrix with as many rows as columns in X
    ## NOTE: this formulation uses X with n obs on the rows and m covariates no the columns, so it is the transpose of the first calculations
    nsamples <- nrow(dep.data)
    n.persample <- rowSums(dep.data)
    n.all <- sum(dep.data)
    H <- (1/n.all)*matrix( rep(n.persample,each=nsamples),nrow=nsamples,byrow=T)
    U <- (diag(rep(1,nsamples)) - H) %*% dep.data
    ## Now we may have a vector of values for rho - so we define tau.mat as an array, with the 3rd index corresponding to the value of rho
    tau.mat <- array(0,dim=c(nsamples,nsamples,length(rho)))
    for(xk in 1:length(rho))  
    {  
        if (rho[xk]==0) { tau.mat[,,xk] <- tcrossprod(indep.data) } 
        else { w.rho <- diag(rep(1,ncovariates)) + rho[xk]*(tcrossprod(rep(1,ncovariates)) -diag(rep(1,ncovariates))  )
        tau.mat[,,xk] <- indep.data %*% w.rho %*% t(indep.data)}
        
    }
    ######################################
    ### NOTES ARMIN START ################
    # all(X %*% t(X) == tau.mat[,,1]) # rho = 0 -> TRUE
    # all(X %*% (t(X) %*% X) %*% t(X) == tau.mat[,,1]) # rho = 1
    # plot(as.numeric(X %*% (t(X) %*% X) %*% t(X)),as.numeric(tau.mat[,,1]))
    ### NOTES ARMIN END ##################
    ######################################
    samp_names = 1:nsamples ## this was rownames(indep.data), but I now do this so that rownames do not have to be added to the array tau.mat
    Sg = get.g2stat.multin(U,mu=mu,rho=rho,tau.mat)
    ### now we will have a vector as result, with one value per combination of values of rho and mu
    #
    ### G2 
    ### Permutations
    # When using permutations: only the rows of tau.mat are permuted
    # To check how the permutations can be efficiently applied, see tests_permutation_g2_multin.R
    
    
    perm_samp = matrix(0, nrow=nrow(indep.data), ncol=nperm)   ## generate the permutation matrix
    for(i in 1:ncol(perm_samp)){
        perm_samp[,i] = samp_names[sample(1:length(samp_names),length(samp_names))]
    }
    
    ## permutation starts - recompute tau.mat  (or recompute U each time)
    for (perm in 1:nperm){
        tau.mat.perm = tau.mat[perm_samp[,perm],,,drop=FALSE]          # permute rows
        tau.mat.perm = tau.mat.perm[,perm_samp[,perm],,drop=FALSE]     # permute columns
        
Rauschenberger's avatar
Rauschenberger committed
1035
        Sg = c(Sg,spliceQTL:::get.g2stat.multin(U, mu=mu,rho=rho,tau.mat.perm) )
Rauschenberger's avatar
Rauschenberger committed
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
    }
    
    
    ########################################################################
    
    #### G2 test statistic
    # *** recompute for a vector of values for each case - just reformat the result with as many rows as permutations + 1,
    # and as many columns as combinations of values of rho and mu
    Sg = matrix(Sg,nrow=nperm+1,ncol=length(mu)*length(rho))
    colnames(Sg) <- paste(rep("rho",ncol(Sg)),rep(1:length(rho),each=length(mu)),rep("mu",ncol(Sg)),rep(1:length(mu),length(rho)) )
    
    ### Calculte G2 pval
Rauschenberger's avatar
Rauschenberger committed
1048
    G2p =  apply(Sg,2,spliceQTL:::get.pval.percol) 
Rauschenberger's avatar
Rauschenberger committed
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
    
    return (list(perm = perm_samp,G2p = G2p,Sg = Sg))
}

# Function: get.g2stat.multin
# Computes the G2 test statistic given two data matrices, under a multinomial distribution
# This is used internally by the G2 function
# Inputs: 
#  U = (I-H)Y, a n*K matrix where n=number obs and K=number multinomial responses possible
#  tau.mat = X' W.rho X, a n*n matrix : both square, symmetric matrices with an equal number of rows
# Output: test statistic (single value)
# 
Rauschenberger's avatar
Rauschenberger committed
1061
get.g2stat.multin <- function(U, mu, rho, tau.mat){
Rauschenberger's avatar
Rauschenberger committed
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
    g2tstat <- NULL
    for(xk in 1:length(rho))
    {
        for(xj in 1:length(mu))
        {
            if(mu[xj]==0) { g2tstat <- c(g2tstat, sum( diag( tcrossprod(U) %*% tau.mat[,,xk] ) ) )
            } else {
                g2tstat <- c(g2tstat, (1-mu[xj])*sum(diag( tcrossprod(U) %*% tau.mat[,,xk] ) ) + mu[xj]*sum( t(U) %*% tau.mat[,,xk] %*% U )  )
            }
            
        }
    }
    g2tstat
}

# Function: get.pval.percol
# This function takes a vector containing the observed test stat as the first entry, followed by values generated by permutation,
# and computed the estimated p-value
# Input
# x: a vector with length nperm+1
# Output
# the pvalue computed
get.pval.percol <- function(x){
    pval = mean(x[1]<= c(Inf , x[2:length(x)]))
    pval
}