functions.R 31.7 KB
Newer Older
Rauschenberger's avatar
Rauschenberger committed
1

Rauschenberger's avatar
Rauschenberger committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

#' @name spliceQTL-package
#' @md
#' @aliases spliceQTL
#' 
#' @title
#' 
#' Alternative Splicing
#' 
#' @description
#' 
#' This R package includes various functions
#' for applying the global test of alternative splicing.
#' Some functions only work on the virtual machine (see below).
#' 
#' @seealso 
#' 
#' Prepare BBMRI and Geuvadis data:
#' * \code{\link{get.snps.geuvadis}} (not VM)
#' * \code{\link{get.snps.bbmri}} (only VM)
#' * \code{\link{get.exons.geuvadis}} (only VM)
#' * \code{\link{get.exons.bbmri}} (only VM)
#' 
#' Process samples and covariates:
#' * \code{\link{match.samples}}
#' * \code{\link{adjust.samples}}
#' * \code{\link{adjust.covariates}}
#' 
#' Search for exons and SNPs:
#' * \code{\link{map.genes}}
#' * \code{\link{map.exons}}
#' * \code{\link{map.snps}}
#' * \code{\link{drop.trivial}}
#' 
#' Test for alternative splicing:
#' * \code{\link{test.single}}
#' * \code{\link{test.multiple}}
#'
#' @keywords documentation
#' @docType package
#' 
NULL


Rauschenberger's avatar
Rauschenberger committed
46
47
48
49
50
51
52
53
54
55
#' @export
#' @title
#' Get SNP data (Geuvadis)
#' 
#' @description
#' This function transforms SNP data (local machine).
#' 
#' @param chr
#' chromosome: integer \eqn{1-22}
#' 
Rauschenberger's avatar
Rauschenberger committed
56
#' @param data
Rauschenberger's avatar
Rauschenberger committed
57
58
#' local directory for VCF (variant call format) and SDRF (sample and data relationship format) files
#' 
Rauschenberger's avatar
Rauschenberger committed
59
60
61
#' @param path
#' local directory for output
#' 
Rauschenberger's avatar
Rauschenberger committed
62
63
64
#' @examples
#' path <- "C:/Users/a.rauschenbe/Desktop/spliceQTL/data"
#' 
Rauschenberger's avatar
Rauschenberger committed
65
get.snps.geuvadis <- function(chr,data=NULL,path=getwd()){
Rauschenberger's avatar
Rauschenberger committed
66
    
Rauschenberger's avatar
Rauschenberger committed
67
68
69
70
71
72
73
74
75
76
77
78
    if(is.null(data)){
        data <- path
        # download SNP data
        file <- paste0("GEUVADIS.chr",chr,".PH1PH2_465.IMPFRQFILT_BIALLELIC_PH.annotv2.genotypes.vcf.gz")
        url <- paste0("http://www.ebi.ac.uk/arrayexpress/files/E-GEUV-1/genotypes/",file)
        destfile <- file.path(data,file)
        if(!file.exists(destfile)){
            utils::download.file(url=url,destfile=destfile,method="auto")
        }
        # transform with PLINK
        setwd(data)
        system(paste0("plink --vcf GEUVADIS.chr",chr,".PH1PH2_465.IMPFRQFILT_BIALLELIC_PH.annotv2.genotypes.vcf.gz",
Rauschenberger's avatar
Rauschenberger committed
79
                  " --maf 0.05 --geno 0 --make-bed --out snps",chr),invisible=FALSE)
Rauschenberger's avatar
Rauschenberger committed
80
81
82
83
84
85
86
87
        # obtain identifiers
        file <- "E-GEUV-1.sdrf.txt"
        url <- paste("http://www.ebi.ac.uk/arrayexpress/files/E-GEUV-1/",file,sep="")
        destfile <- file.path(data,file)
        if(!file.exists(destfile)){
            utils::download.file(url=url,destfile=destfile,method="auto")
        }
    }
Rauschenberger's avatar
Rauschenberger committed
88
89
    
    # read into R
Rauschenberger's avatar
Rauschenberger committed
90
91
92
    bed <- file.path(data,paste("snps",chr,".bed",sep=""))
    bim <- file.path(data,paste("snps",chr,".bim",sep=""))
    fam <- file.path(data,paste("snps",chr,".fam",sep=""))
Rauschenberger's avatar
Rauschenberger committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
    X <- snpStats::read.plink(bed=bed,bim=bim,fam=fam)
    X$fam <- NULL; all(diff(X$map$position) > 0)
    
    # fitler MAF
    maf <- snpStats::col.summary(X$genotypes)$MAF
    cond <- maf >= 0.05
    X$genotypes <- X$genotypes[,cond]
    X$map <- X$map[cond,]
    
    # format
    colnames(X$genotypes) <- paste0(X$map$chromosome,":",X$map$position)
    snps <- methods::as(object=X$genotypes,Class="numeric")
    class(snps) <- "integer"
    
    # change identifiers
Rauschenberger's avatar
Rauschenberger committed
108
    samples <- utils::read.delim(file=file.path(data,"E-GEUV-1.sdrf.txt"))
Rauschenberger's avatar
Rauschenberger committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
    match <- match(rownames(snps),samples$Source.Name)
    rownames(snps) <- samples$Comment.ENA_RUN.[match]
    snps <- snps[!is.na(rownames(snps)),]
    
    save(object=snps,file=file.path(path,paste0("Geuvadis.chr",chr,".RData")))
}


#' @export
#' @title
#' Get SNP data (BBMRI)
#' 
#' @description
#' This function transforms SNP data (virtual machine).
#' 
#' @param chr
#' chromosome: integer \eqn{1-22}
#' 
#' @param biobank
#' character "CODAM", "LL", "LLS", "NTR", "PAN", "RS", or NULL (all)
#' 
#' @param path
#' data directory
#' 
Rauschenberger's avatar
Rauschenberger committed
133
#' @param size
Rauschenberger's avatar
Rauschenberger committed
134
135
#' maximum number of SNPs to read in at once;
#' trade-off between memory usage (low) and speed (high)
Rauschenberger's avatar
Rauschenberger committed
136
#' 
Rauschenberger's avatar
Rauschenberger committed
137
138
139
#' @examples
#' path <- "/virdir/Scratch/arauschenberger/trial"
#'
Rauschenberger's avatar
Rauschenberger committed
140
get.snps.bbmri <- function(chr,biobank=NULL,path=getwd(),size=500*10^3){
Rauschenberger's avatar
Rauschenberger committed
141
142
143
144
145
146
147
148
149
150
151
152

    start <- Sys.time()
    message(rep("-",times=20)," chromosome ",chr," ",rep("-",times=20))
    
    p <- 5*10^6 # (maximum number of SNPs per chromosome, before filtering)
    skip <- seq(from=0,to=p,by=size)
    if(is.null(biobank)){
        study <- c("CODAM","LL","LLS0","LLS1","NTR0","NTR1","PAN","RS")
    } else if(biobank=="LLS"){
        study <- c("LLS0","LLS1")
    } else if(biobank=="NTR"){
        study <- c("NTR0","NTR1")
Rauschenberger's avatar
Rauschenberger committed
153
    } else if(biobank %in% c("CODAM","LL","PAN","RS")){
Rauschenberger's avatar
Rauschenberger committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
        study <- biobank
    } else{
        stop("Invalid biobank.",call.=FALSE)
    }
    collect <- matrix(list(),nrow=length(skip),ncol=length(study))
    colnames(collect) <- study
    
    for(i in seq_along(skip)){
        message("\n","chunk ",i,": ",appendLF=FALSE)
        for(j in seq_along(study)){
            message(study[j],"  ",appendLF=FALSE)
            
            # Locating files on virtual machine.
            dir <- study[j]
            if(study[j]=="LLS0"){dir <- "LLS/660Q"}
            if(study[j]=="LLS1"){dir <- "LLS/OmniExpr"}
            if(study[j]=="NTR0"){dir <- "NTR/Affy6"}
            if(study[j]=="NTR1"){dir <- "NTR/GoNL"}
            path0 <- file.path("/mnt/virdir/Backup/RP3_data/HRCv1.1_Imputation",dir)
Rauschenberger's avatar
Rauschenberger committed
173
            path1 <- path
Rauschenberger's avatar
Rauschenberger committed
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
            file0 <- paste0("chr",chr,".dose.vcf.gz")
            file1 <- paste0(study[j],".chr",chr,".dose.vcf.gz")
            file2 <- paste0(study[j],".chr",chr,".dose.vcf")
            
            # Decompressing missing files in personal folder.
            if(!file.exists(file.path(path1,file2))){
                file.copy(from=file.path(path0,file0),to=file.path(path1,file1))
                R.utils::gunzip(filename=file.path(path1,file1),remove=TRUE,overwrite=TRUE)
            }
            
            # Reading in files.
            vcf <- vcfR::read.vcfR(file=file.path(path1,file2),skip=skip[i],nrows=size,verbose=FALSE)
            vcf <- vcf[vcf@fix[,"CHROM"]!="",] # bug fix
            vcf@fix[,"ID"] <- paste0(vcf@fix[,"ID"],"_",seq_len(dim(vcf)["variants"]))
            collect[i,j][[1]] <- vcf
            stop <- dim(vcf)["variants"]==0
            final <- dim(vcf)["variants"]<size
            if(stop){break}
        }
        print(utils::object.size(collect),units="Gb")
        end <- Sys.time()
        if(stop){break}
        
        # Calculating minor allele frequency.
        num <- numeric(); maf <- list()
        for(j in seq_along(study)){
            num[j] <- dim(collect[i,j][[1]])["gt_cols"] # replace by adjusted sample sizes?
            maf[[j]] <- num[j]*vcfR::maf(collect[i,j][[1]])[,"Frequency"]
        }
        cond <- rowSums(do.call(what="cbind",args=maf))/sum(num)>0.05
        if(sum(cond)==0){if(final){break}else{next}}
        
        # Filtering out genotypes.
        for(j in seq_along(study)){
            gt <- vcfR::extract.gt(collect[i,j][[1]][cond,])
            gt[gt=="0|0"] <- 0
            gt[gt=="0|1"|gt=="1|0"] <- 1
            gt[gt=="1|1"] <- 2
            storage.mode(gt) <- "integer"
            collect[i,j][[1]] <- gt
        }
        
        if(final){break}
    }
    
    # Removing empty rows.
    cond <- apply(collect,1,function(x) all(sapply(x,length)==0))
    collect <- collect[!cond,,drop=FALSE]
Rauschenberger's avatar
Rauschenberger committed
222
    #save(object=collect,file=file.path(path1,paste0("temp.chr",chr,".RData")))
Rauschenberger's avatar
Rauschenberger committed
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
    #load(file.path(path1,paste0("temp.chr",chr,".RData")))
    
    # Fusing all matrices.
    snps <- NULL
    for(i in seq_len(nrow(collect))){
        inner <- NULL
        for(j in seq_len(ncol(collect))){
            add <- collect[i,j][[1]]
            colnames(add) <- paste0(colnames(collect)[j],":",colnames(add))
            inner <- cbind(inner,add)
        }
        snps <- rbind(snps,inner)
    }
    attributes(snps)$time <- end-start
    rownames(snps) <- sapply(strsplit(x=rownames(snps),split="_"),function(x) x[[1]])
    snps <- t(snps)
    
    # Filter samples.
    rownames(snps) <- sub(x=rownames(snps),pattern="LLS0|LLS1",replacement="LLS")
    rownames(snps) <- sub(x=rownames(snps),pattern="NTR0|NTR1",replacement="NTR")
Rauschenberger's avatar
Rauschenberger committed
243

Rauschenberger's avatar
Rauschenberger committed
244
245
246
247
248
    if(is.null(biobank)){
        save(object=snps,file=file.path(path1,paste0("BBMRI.chr",chr,".RData")))
    } else {
        save(object=snps,file=file.path(path1,paste0(biobank,".chr",chr,".RData")))
    }
Rauschenberger's avatar
Rauschenberger committed
249
250
251
    
    # Remove temporary files.
    for(j in seq_along(study)){
Rauschenberger's avatar
Rauschenberger committed
252
        file.remove(file.path(path1,paste0(study[j],".chr",chr,".dose.vcf")))
Rauschenberger's avatar
Rauschenberger committed
253
254
    }
    
Rauschenberger's avatar
Rauschenberger committed
255
256
257
}


Rauschenberger's avatar
Rauschenberger committed
258
259


Rauschenberger's avatar
Rauschenberger committed
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
#' @export
#' @title
#' Get exon data (Geuvadis)
#' 
#' @description
#' This function transforms exon data (virtual machine).
#' 
#' @param path
#' data directory 
#' 
#' @examples
#' path <- "/virdir/Scratch/arauschenberger/trial"
#' 
get.exons.geuvadis <- function(path=getwd()){

    nrows <- 303544
    file <-"/virdir/Scratch/rmenezes/data_counts.txt"
    exons <- utils::read.table(file=file,header=TRUE,nrows=nrows)
    exons <- exons[exons[,"chr"] %in% 1:22,] # autosomes
    rownames(exons) <- exon_id <- paste0(exons[,"chr"],"_",exons[,"start"],"_",exons[,"end"])
    gene_id <- as.character(exons[,4])
    exons <- t(exons[,-c(1:4)])

    save(list=c("exons","exon_id","gene_id"),file=file.path(path,"Geuvadis.exons.RData"))
}


#' @export
#' @title
#' Get exon data (BBMRI)
#' 
#' @description
#' This function transforms exon data (virtual machine).
#' 
#' @param path
#' data directory 
#' 
#' @examples
#' path <- "/virdir/Scratch/arauschenberger/trial"
#' 
get.exons.bbmri <- function(path=getwd()){
    
    # sample identifiers:
    # (1) loading quality controlled gene expression data 
    # (2) extracting sample identifiers
    # (3) removing identifiers without SNP data
    # (4) translating identifiers
    utils::data(rnaSeqData_ReadCounts_BIOS_cleaned,package="BBMRIomics") # (1)
Rauschenberger's avatar
Rauschenberger committed
308
309
    cd <- SummarizedExperiment::colData(counts)[,c("biobank_id","imputation_id","run_id")] # (2)
    counts <- NULL
Rauschenberger's avatar
Rauschenberger committed
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
    names(cd) <- substr(names(cd),start=1,stop=3) # abbreviate names
    cd <- cd[!is.na(cd$imp),] # (3)
    cd$id <- NA # (4)
    cd$id[cd$bio=="CODAM"] <- sapply(strsplit(x=cd$imp[cd$bio=="CODAM"],split="_"),function(x) x[[2]])
    cd$id[cd$bio=="LL"] <- sub(pattern="1_LLDeep_",replacement="",x=cd$imp[cd$bio=="LL"])
    cd$id[cd$bio=="LLS"] <- sapply(strsplit(x=cd$imp[cd$bio=="LLS"],split="_"),function(x) x[[2]])
    cd$id[cd$bio=="NTR"] <- sapply(strsplit(x=cd$imp[cd$bio=="NTR"],split="_"),function(x) x[[2]])
    cd$id[cd$bio=="PAN"] <- cd$imp[cd$bio=="PAN"]
    cd$id[cd$bio=="RS"] <- sub(pattern="RS1_|RS2_|RS3_",replacement="",x=cd$imp[cd$bio=="RS"])
    
    # Identify individual not with "id" but with "bio:id".
    any(duplicated(cd$id)) # TRUE
    sapply(unique(cd$bio),function(x) any(duplicated(cd$id[x]))) # FALSE
    
    # exon data:
    # (1) loading exon expression data
    # (2) extracting sample identifiers
    # (3) retaining autosomes
    # (4) retaining samples from above
    load("/virdir/Backup/RP3_data/RNASeq/v2.1.3/exon_base/exon_base_counts.RData") # (1)
    colnames(counts) <- sub(pattern=".exon.base.count.gz",replacement="",x=colnames(counts)) # (2)
    autosomes <- sapply(strsplit(x=rownames(counts),split="_"),function(x) x[[1]] %in% 1:22) # (3)
    exons <- counts[autosomes,cd$run] # (3) and (4)
    exon_id <- exon_id[autosomes] # (3)
    gene_id <- gene_id[autosomes] # (3)
    colnames(exons) <- paste0(cd$bio,":",cd$id)
    exons <- t(exons)
    
    save(list=c("exons","exon_id","gene_id"),file=file.path(path,"BBMRI.exons.RData"))
}


Rauschenberger's avatar
Rauschenberger committed
342
343
344
345
346
#' @export
#' @title
#' Prepare data matrices
#' 
#' @description
Rauschenberger's avatar
Rauschenberger committed
347
348
#' This function removes duplicate samples from each matrix,
#' only retains samples appearing in all matrices,
Rauschenberger's avatar
Rauschenberger committed
349
#' and brings samples into the same order.
Rauschenberger's avatar
Rauschenberger committed
350
#' 
Rauschenberger's avatar
Rauschenberger committed
351
#' @param ...
Rauschenberger's avatar
Rauschenberger committed
352
353
#' matrices with samples in the rows and variables in the columns,
#' with sample identifiers as rows names
Rauschenberger's avatar
Rauschenberger committed
354
#' 
Rauschenberger's avatar
Rauschenberger committed
355
356
#' @param message
#' display messages\strong{:} logical
Rauschenberger's avatar
Rauschenberger committed
357
358
#' 
#' @examples
Rauschenberger's avatar
Rauschenberger committed
359
360
361
#' X <- matrix(rnorm(6),nrow=3,ncol=2,dimnames=list(c("A","B","C")))
#' Z <- matrix(rnorm(9),nrow=3,ncol=3,dimnames=list(c("B","A","B")))
#' match.samples(X,Z)
Rauschenberger's avatar
Rauschenberger committed
362
#' 
Rauschenberger's avatar
Rauschenberger committed
363
match.samples <- function(...,message=TRUE){
Rauschenberger's avatar
Rauschenberger committed
364
    
Rauschenberger's avatar
Rauschenberger committed
365
366
    list <- list(...)
    if(length(list)==1 & is.list(list[[1]])){list <- list[[1]]}
Rauschenberger's avatar
Rauschenberger committed
367
368
369
370
371
    if(is.null(names(list))){
        names(list) <- sapply(substitute(list(...))[-1],deparse)
    }
    names <- names(list)
    
Rauschenberger's avatar
Rauschenberger committed
372
    # check input
Rauschenberger's avatar
Rauschenberger committed
373
374
375
    cond <- sapply(list,function(x) !is.matrix(x))
    if(any(cond)){
        stop("Provide matrices!",call.=FALSE)
Rauschenberger's avatar
Rauschenberger committed
376
    }
Rauschenberger's avatar
Rauschenberger committed
377
378
379
    cond <- sapply(list,function(x) is.null(rownames(x)))
    if(any(cond)){
        stop("Provide row names!",call.=FALSE)
Rauschenberger's avatar
Rauschenberger committed
380
381
    }
    
Rauschenberger's avatar
Rauschenberger committed
382
    # remove duplicated samples
Rauschenberger's avatar
Rauschenberger committed
383
    duplic <- lapply(list,function(x) duplicated(rownames(x)))
Rauschenberger's avatar
Rauschenberger committed
384
    for(i in seq_along(list)){
Rauschenberger's avatar
Rauschenberger committed
385
386
387
        number <- round(100*mean(duplic[[i]]))
        if(message){message(number," duplicates in \"",names[i],"\"")}
        list[[i]] <- list[[i]][!duplic[[i]],,drop=FALSE]
Rauschenberger's avatar
Rauschenberger committed
388
    }
Rauschenberger's avatar
Rauschenberger committed
389
390
    
    # retain overlapping samples
Rauschenberger's avatar
Rauschenberger committed
391
392
393
    all <- Reduce(f=intersect,x=lapply(list,rownames))
    for(i in seq_along(list)){
        percent <- round(100*mean(rownames(list[[i]]) %in% all))
Rauschenberger's avatar
Rauschenberger committed
394
        if(message){message(percent,"% overlap in \"",names[i],"\"")}
Rauschenberger's avatar
Rauschenberger committed
395
        list[[i]] <- list[[i]][all,,drop=FALSE]
Rauschenberger's avatar
Rauschenberger committed
396
    }
Rauschenberger's avatar
Rauschenberger committed
397
398
    
    # check output
Rauschenberger's avatar
Rauschenberger committed
399
400
    cond <- sapply(list,function(x) any(duplicated(rownames(x))))
    if(any(cond)){
Rauschenberger's avatar
Rauschenberger committed
401
402
        stop("Duplicate samples!",call.=FALSE)
    }
Rauschenberger's avatar
Rauschenberger committed
403
404
    cond <- sapply(list,function(x) nrow(x)!=nrow(list[[1]]))
    if(any(cond)){
Rauschenberger's avatar
Rauschenberger committed
405
406
        stop("Different sample sizes!",call.=FALSE)
    }
Rauschenberger's avatar
Rauschenberger committed
407
408
    cond <- sapply(list,function(x) any(rownames(x)!=rownames(list[[1]])))
    if(any(cond)){
Rauschenberger's avatar
Rauschenberger committed
409
410
411
        stop("Different sample names!",call.=FALSE)
    }
    
Rauschenberger's avatar
Rauschenberger committed
412
    return(list)
Rauschenberger's avatar
Rauschenberger committed
413
414
415
416
417
418
419
}

#' @export
#' @title
#' Adjust library sizes
#' 
#' @description
Rauschenberger's avatar
Rauschenberger committed
420
#' This function adjusts RNA-seq expression data for different library sizes.
Rauschenberger's avatar
Rauschenberger committed
421
#' 
Rauschenberger's avatar
Rauschenberger committed
422
423
#' @param x
#' matrix with \eqn{n} rows (samples) and \eqn{p} columns (variables)
Rauschenberger's avatar
Rauschenberger committed
424
425
#' 
#' @examples
Rauschenberger's avatar
Rauschenberger committed
426
427
428
429
#' n <- 5; p <- 10
#' x <- matrix(rnbinom(n=n*p,mu=5,size=1/0.5),nrow=n,ncol=p)
#' x[1,] <- 10*x[1,]
#' adjust.samples(x)
Rauschenberger's avatar
Rauschenberger committed
430
#' 
Rauschenberger's avatar
Rauschenberger committed
431
adjust.samples <- function(x){
Rauschenberger's avatar
Rauschenberger committed
432
433
434
435
436
437
    if(!is.matrix(x)){
        stop("no matrix argument",call.=FALSE)
    }
    if(!is.numeric(x)){
        stop("no numeric argument",call.=FALSE)
    }
Rauschenberger's avatar
Rauschenberger committed
438
    if(!is.integer(x)&&any(round(x)!=x)){
Rauschenberger's avatar
Rauschenberger committed
439
        warning("non-integer values",call.=FALSE)
Rauschenberger's avatar
Rauschenberger committed
440
    }
Rauschenberger's avatar
Rauschenberger committed
441
    if(any(x<0)){
Rauschenberger's avatar
Rauschenberger committed
442
        warning("negative values",call.=FALSE)
Rauschenberger's avatar
Rauschenberger committed
443
    }
Rauschenberger's avatar
Rauschenberger committed
444
445
446
    n <- nrow(x); p <- ncol(x)
    lib.size <- rowSums(x)
    norm.factors <- edgeR::calcNormFactors(object=t(x),lib.size=lib.size)
Rauschenberger's avatar
Rauschenberger committed
447
    gamma <- norm.factors*lib.size/mean(lib.size)
Rauschenberger's avatar
Rauschenberger committed
448
    gamma <- matrix(gamma,nrow=n,ncol=p,byrow=FALSE)
Rauschenberger's avatar
Rauschenberger committed
449
450
    x <- x/gamma
    return(x)
Rauschenberger's avatar
Rauschenberger committed
451
452
453
454
455
456
457
458
459
}

#' @export
#' @title
#' Adjust exon length
#' 
#' @description
#' This function adjusts exon expression data for different exon lengths.
#' 
Rauschenberger's avatar
Rauschenberger committed
460
#' @param x
Rauschenberger's avatar
Rauschenberger committed
461
462
#' matrix with \eqn{n} rows (samples) and \eqn{p} columns (exons)
#' 
Rauschenberger's avatar
Rauschenberger committed
463
#' @param offset
Rauschenberger's avatar
Rauschenberger committed
464
#' exon length\strong{:} vector of length \eqn{p}
Rauschenberger's avatar
Rauschenberger committed
465
#' 
Rauschenberger's avatar
Rauschenberger committed
466
467
#' @param group
#' gene names\strong{:} vector of length \eqn{p}
Rauschenberger's avatar
Rauschenberger committed
468
469
470
471
#' 
#' @examples
#' NA
#' 
Rauschenberger's avatar
Rauschenberger committed
472
adjust.covariates <- function(x,offset,group){
Rauschenberger's avatar
Rauschenberger committed
473
474
475
    if(!is.numeric(x)|!is.matrix(x)){
        stop("Argument \"x\" is no numeric matrix.",call.=FALSE)
    }
Rauschenberger's avatar
Rauschenberger committed
476
477
478
479
480
    if(!is.numeric(offset)|!is.vector(offset)){
        stop("Argument \"offset\" is no numeric vector.",call.=FALSE)
    }
    if(any(offset<0)){
        stop("Argument \"offset\" takes negative values",call.=FALSE)   
Rauschenberger's avatar
Rauschenberger committed
481
    }
Rauschenberger's avatar
Rauschenberger committed
482
483
484
485
    if(!is.character(group)|!is.vector(group)){
        stop("Argument \"group\" is no character vector.",call.=FALSE)
    }
    if(ncol(x)!=length(group)|ncol(x)!=length(offset)){
Rauschenberger's avatar
Rauschenberger committed
486
487
        stop("Contradictory dimensions.",call.=FALSE)
    }
Rauschenberger's avatar
Rauschenberger committed
488
489
    n <- nrow(x); p <- ncol(x); names <- dimnames(x)
    x <- as.numeric(x)
Rauschenberger's avatar
Rauschenberger committed
490
    offset <- rep(offset,each=n)
Rauschenberger's avatar
Rauschenberger committed
491
492
493
494
495
496
497
    group <- strsplit(group,split=",")
    group <- sapply(group,function(x) x[[1]][1])
    group <- rep(group,each=n)
    lmer <- lme4::lmer(x ~ offset + (1|group))
    x <- matrix(stats::residuals(lmer),nrow=n,ncol=p,dimnames=names)
    x <- x-min(x)
    return(x)
Rauschenberger's avatar
Rauschenberger committed
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
}

#' @export
#' @title
#' Search for genes
#' 
#' @description
#' This function retrieves all genes on a chromosome.
#' 
#' @param chr
#' chromosome\strong{:} integer 1-22
#' 
#' @param path
#' path to gene transfer format files (.gtf)
#' 
#' @param release
#' character "NCBI36", "GRCh37", or "GRCh38"
#' 
#' @param build
#' integer 49-91
#' 
#' @examples
#' NA
#' 
Rauschenberger's avatar
Rauschenberger committed
522
523
524
map.genes <- function(chr,path=getwd(),release="GRCh37",build=71){
    
    # check input
Rauschenberger's avatar
Rauschenberger committed
525
    if(!chr %in% 1:22){
Rauschenberger's avatar
Rauschenberger committed
526
527
528
529
530
531
532
533
534
        stop("Invalid argument \"chr\".",call.=FALSE)
    }
    if(!release %in% c("NCBI36","GRCh37","GRCh38")){
        stop("Invalid argument \"release\".",call.=FALSE)
    }
    if(!build %in% 49:91){
        stop("Invalid argument \"build\".",call.=FALSE)
    }
    
Rauschenberger's avatar
Rauschenberger committed
535
536
    file <- paste0("Homo_sapiens.",release,".",build,".gtf")
    if(!file.exists(file.path(path,file))){
Rauschenberger's avatar
Rauschenberger committed
537
538
539
540
541
542
543
544
545
        url <- paste0("ftp://ftp.ensembl.org/pub/release-",build,
                      "/gtf/homo_sapiens/",file,".gz")
        destfile <- file.path(path,paste0(file,".gz"))
        utils::download.file(url=url,destfile=destfile,method="auto")
        R.utils::gunzip(filename=destfile,remove=FALSE,overwrite=TRUE)
    }
    object <- refGenome::ensemblGenome()
    refGenome::basedir(object) <- path
    refGenome::read.gtf(object,filename=file)
Rauschenberger's avatar
Rauschenberger committed
546
547
548
549
550
551
    x <- refGenome::getGenePositions(object=object,by="gene_id")
    x <- x[x$seqid==chr & x$gene_biotype=="protein_coding",]
    x <- x[,c("gene_id","seqid","start","end")]
    rownames(x) <- NULL
    colnames(x)[colnames(x)=="seqid"] <- "chr"
    return(x)
Rauschenberger's avatar
Rauschenberger committed
552
553
554
555
556
557
558
559
560
}

#' @export
#' @title
#' Search for exons
#' 
#' @description
#' This function
#' 
Rauschenberger's avatar
Rauschenberger committed
561
#' @param gene
Rauschenberger's avatar
Rauschenberger committed
562
563
#' gene names\strong{:} vector with one entry per gene,
#' including the gene names
Rauschenberger's avatar
Rauschenberger committed
564
#' 
Rauschenberger's avatar
Rauschenberger committed
565
#' @param exon
Rauschenberger's avatar
Rauschenberger committed
566
567
568
#' exon names\strong{:} vector with one entry per exon,
#' including the corresponding \emph{gene} names
#' (separated by comma if multiple gene names)
Rauschenberger's avatar
Rauschenberger committed
569
570
571
572
573
574
#' 
#' @details
#' The exon names should contain the gene names. For each gene, this function
#' returns the indices of the exons.
#' 
#' @examples
Rauschenberger's avatar
Rauschenberger committed
575
576
577
#' gene <- c("A","B","C")
#' exon <- c("A","A,B","B","B,C","C")
#' map.exons(gene,exon)
Rauschenberger's avatar
Rauschenberger committed
578
#'
Rauschenberger's avatar
Rauschenberger committed
579
580
581
map.exons <- function(gene,exon){
    p <- length(gene)
    x <- list()
Rauschenberger's avatar
Rauschenberger committed
582
583
584
    pb <- utils::txtProgressBar(min=0,max=p,style=3)
    for(i in seq_len(p)){
        utils::setTxtProgressBar(pb=pb,value=i)
Rauschenberger's avatar
Rauschenberger committed
585
586
        which <- as.integer(grep(pattern=gene[i],x=exon))
        x[[i]] <- which
Rauschenberger's avatar
Rauschenberger committed
587
    }
Rauschenberger's avatar
Rauschenberger committed
588
589
590
    close(con=pb)
    names(x) <- gene
    return(x)
Rauschenberger's avatar
Rauschenberger committed
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
}

#' @export
#' @title
#' Search for SNPs
#' 
#' @description
#' This function
#' 
#' @param gene.chr
#' chromosome\strong{:}
#' numeric vector with one entry per gene
#' 
#' @param gene.start
#' start position\strong{:}
#' numeric vector with one entry per gene
#' 
#' @param gene.end
#' end position\strong{:}
#' numeric vector with one entry per gene
#' 
#' @param snp.chr
#' integer 1-22
#' 
#' @param snp.pos
#' chromosomal position of SNPs\strong{:}
#' numeric vector with one entry per SNP
#' 
Rauschenberger's avatar
Rauschenberger committed
619
620
621
622
#' @param dist
#' number of base pairs before start position\strong{:}
#' integer
#' 
Rauschenberger's avatar
Rauschenberger committed
623
#' @examples
Rauschenberger's avatar
Rauschenberger committed
624
625
626
#' gene.chr <- rep(1,times=5)
#' gene.start <- 1:5
#' gene.end <- 2:6
Rauschenberger's avatar
Rauschenberger committed
627
#'
Rauschenberger's avatar
Rauschenberger committed
628
629
630
631
632
633
#' snp.chr <- rep(1,times=100)
#' snp.pos <- seq(from=1,to=4.9,length.out=100)
#' 
#' map.snps(gene.chr,gene.start,gene.end,snp.chr,snp.pos,dist=0)
#'
map.snps <- function(gene.chr,gene.start,gene.end,snp.chr,snp.pos,dist=10^3){
Rauschenberger's avatar
Rauschenberger committed
634
635
636
637
    if(length(gene.chr)!=length(gene.start)|length(gene.chr)!=length(gene.end)){
        stop("Invalid.",call.=FALSE)
    }
    p <- length(gene.start)
Rauschenberger's avatar
Rauschenberger committed
638
    x <- data.frame(from=integer(length=p),to=integer(length=p))
Rauschenberger's avatar
Rauschenberger committed
639
640
641
642
643
    pb <- utils::txtProgressBar(min=0,max=p,style=3)
    for(i in seq_len(p)){ # 
        utils::setTxtProgressBar(pb=pb,value=i)
        chr <- snp.chr == gene.chr[i]
        if(!any(chr)){next}
Rauschenberger's avatar
Rauschenberger committed
644
        start <- snp.pos >= (gene.start[i] - dist)
Rauschenberger's avatar
Rauschenberger committed
645
646
647
        end <- snp.pos <= gene.end[i] + 0
        which <- as.integer(which(chr & start & end))
        if(length(which)==0){next}
Rauschenberger's avatar
Rauschenberger committed
648
649
        x$from[i] <- min(which)
        x$to[i] <- max(which)
Rauschenberger's avatar
Rauschenberger committed
650
651
652
        if(length(which)==1){next}
        if(!all(diff(which)==1)){stop("SNPs are in wrong order!")}
    }
Rauschenberger's avatar
Rauschenberger committed
653
654
    close(con=pb)
    return(x)
Rauschenberger's avatar
Rauschenberger committed
655
656
657
658
}

#' @export
#' @title
Rauschenberger's avatar
Rauschenberger committed
659
#' Drop trivial tests
Rauschenberger's avatar
Rauschenberger committed
660
661
662
663
664
665
#' 
#' @description
#' This function
#' 
#' @param map
#' list with names "genes", "exons", and "snps"
Rauschenberger's avatar
Rauschenberger committed
666
667
#' (output from \code{\link{map.genes}}, \code{\link{map.exons}},
#' and \code{\link{map.snps}})
Rauschenberger's avatar
Rauschenberger committed
668
669
#' 
#' @details
Rauschenberger's avatar
Rauschenberger committed
670
#' This functions drops tests for genes without SNPs or with a single exon.
Rauschenberger's avatar
Rauschenberger committed
671
672
673
674
#' 
#' @examples
#' NA
#' 
Rauschenberger's avatar
Rauschenberger committed
675
drop.trivial <- function(map){
Rauschenberger's avatar
Rauschenberger committed
676
677
678
679
680
681
682
683
684
685
686
    
    # check input
    if(length(map)!=3){
        stop("Unexpected argument length.",call.=FALSE)
    }
    if(any(names(map)!=c("genes","exons","snps"))){
        stop("Unexpected argument names.",call.=FALSE)
    }
    
    # search
    p <- nrow(map$genes)
Rauschenberger's avatar
Rauschenberger committed
687
688
    pass <- rep(NA,times=p)
    pb <- utils::txtProgressBar(min=0,max=p,style=3)
Rauschenberger's avatar
Rauschenberger committed
689
    for(i in seq_len(p)){
Rauschenberger's avatar
Rauschenberger committed
690
691
692
693
694
695
696
697
698
699
        utils::setTxtProgressBar(pb=pb,value=i)
        ys <- map$exons[[i]]
        check <- logical()
        # Exclude genes without SNPs:
        check[1] <- map$snps$from[i] > 0
        check[2] <- map$snps$to[i] > 0
        # Exclude genes with single exon:
        check[3] <- length(ys) > 1
        pass[i] <- all(check)
    }
Rauschenberger's avatar
Rauschenberger committed
700
    close(con=pb)
Rauschenberger's avatar
Rauschenberger committed
701
702
703
704
705
706
707
708
709
    
    # check output
    if(any(pass[map$snps$to==0 & map$snps$from==0])){
        stop("Genes without any SNPs.",call.=FALSE)
    }
    if(any(pass[sapply(map$exons,length)<2])){
        stop("Genes without multiple exons.",call.=FALSE)
    }
    
Rauschenberger's avatar
Rauschenberger committed
710
711
712
713
    map$genes <- map$genes[pass,]
    map$exons <- map$exons[pass]
    map$snps <- map$snps[pass,]
    return(map)
Rauschenberger's avatar
Rauschenberger committed
714
715
716
717
718
}


#' @export
#' @title
Rauschenberger's avatar
Rauschenberger committed
719
#' Conduct single tests
Rauschenberger's avatar
Rauschenberger committed
720
721
722
723
724
725
726
727
728
729
730
731
732
733
#' 
#' @description
#' This function
#' 
#' @param Y
#' exon expression\strong{:}
#' matrix with \eqn{n} rows (samples) and \eqn{p} columns (exons)
#' 
#' @param X
#' SNP genotype\strong{:}
#' matrix with \eqn{n} rows (samples) and \eqn{q} columns (SNPs)
#' 
#' @param map
#' list with names "genes", "exons", and "snps"
Rauschenberger's avatar
Rauschenberger committed
734
735
#' (output from \code{\link{map.genes}}, \code{\link{map.exons}},
#' and \code{\link{map.snps}})
Rauschenberger's avatar
Rauschenberger committed
736
737
738
739
740
741
742
743
744
745
746
747
#' 
#' @param i
#' gene index\strong{:}
#' integer between \eqn{1} and \code{nrow(map$genes)}
#' 
#' @param limit
#' cutoff for rounding \code{p}-values
#' 
#' @param steps
#' size of permutation chunks\strong{:}
#' integer vector
#' 
Rauschenberger's avatar
Rauschenberger committed
748
749
750
#' @param rho
#' correlation\strong{:}
#' numeric vector with values between \eqn{0} and \eqn{1}
Rauschenberger's avatar
Rauschenberger committed
751
#' 
Rauschenberger's avatar
Rauschenberger committed
752
753
754
755
756
757
758
759
#' @details
#' The maximum number of permutations equals \code{sum(steps)}. Permutations is
#' interrupted if at least \code{limit} test statistics for the permuted data
#' are larger than the test statistic for the observed data.
#' 
#' @examples
#' NA
#' 
Rauschenberger's avatar
Rauschenberger committed
760
test.single <- function(Y,X,map,i,limit=NULL,steps=NULL,rho=c(0,0.5,1)){
Rauschenberger's avatar
Rauschenberger committed
761
762
763
    
    if(is.null(limit)){limit <- 5}
    if(is.null(steps)){steps <- c(10,20,20,50)}
Rauschenberger's avatar
Rauschenberger committed
764
    
Rauschenberger's avatar
Rauschenberger committed
765
    # check input
Rauschenberger's avatar
Rauschenberger committed
766
767
768
769
770
771
    if(!is.numeric(limit)){
        stop("Argument \"limit\" is not numeric.",call.=FALSE)
    }
    if(limit<1){
        stop("Argument \"limit\" is below one.",call.=FALSE)
    }
Rauschenberger's avatar
Rauschenberger committed
772
    if(!is.numeric(steps)|!is.vector(steps)){
Rauschenberger's avatar
Rauschenberger committed
773
774
775
776
777
778
        stop("Argument \"steps\" is no numeric vector.",call.=FALSE)
    }
    if(sum(steps)<2){
        stop("Too few permutations \"sum(steps)\".",call.=FALSE)
    }
    
Rauschenberger's avatar
Rauschenberger committed
779
    # extract data
Rauschenberger's avatar
Rauschenberger committed
780
    ys <- map$exons[[i]]
Rauschenberger's avatar
Rauschenberger committed
781
    y <- Y[,ys,drop=FALSE]
Rauschenberger's avatar
Rauschenberger committed
782
    xs <- seq(from=map$snps$from[i],to=map$snps$to[i],by=1)
Rauschenberger's avatar
Rauschenberger committed
783
    x <- X[,xs,drop=FALSE]
Rauschenberger's avatar
Rauschenberger committed
784
    
Rauschenberger's avatar
Rauschenberger committed
785
    # test effects
Rauschenberger's avatar
Rauschenberger committed
786
787
    pvalue <- rep(x=NA,times=length(rho))
    for(j in seq_along(rho)){
Rauschenberger's avatar
Rauschenberger committed
788
789
        tstat <- spliceQTL:::G2.multin(
            dep.data=y,indep.data=x,nperm=steps[1]-1,rho=rho[j])$Sg
Rauschenberger's avatar
Rauschenberger committed
790
        for(nperm in steps[-1]){
Rauschenberger's avatar
Rauschenberger committed
791
792
            tstat <- c(tstat,spliceQTL:::G2.multin(
                dep.data=y,indep.data=x,nperm=nperm,rho=rho[j])$Sg[-1])
Rauschenberger's avatar
Rauschenberger committed
793
            if(sum(tstat >= tstat[1]) >= limit){break}
Rauschenberger's avatar
Rauschenberger committed
794
        }
Rauschenberger's avatar
Rauschenberger committed
795
        pvalue[j] <- mean(tstat >= tstat[1],na.rm=TRUE)
Rauschenberger's avatar
Rauschenberger committed
796
    }
Rauschenberger's avatar
Rauschenberger committed
797

Rauschenberger's avatar
Rauschenberger committed
798
799
800
801
    return(pvalue)
}


Rauschenberger's avatar
Rauschenberger committed
802
803
#' @export
#' @title
Rauschenberger's avatar
Rauschenberger committed
804
#' Conduct multiple tests
Rauschenberger's avatar
Rauschenberger committed
805
806
#' 
#' @description
Rauschenberger's avatar
Rauschenberger committed
807
#' This function ...
Rauschenberger's avatar
Rauschenberger committed
808
809
810
811
812
813
814
815
816
#' 
#' @param Y
#' exon expression\strong{:}
#' matrix with \eqn{n} rows (samples) and \eqn{p} columns (exons)
#' 
#' @param X
#' SNP genotype\strong{:}
#' matrix with \eqn{n} rows (samples) and \eqn{q} columns (SNPs)
#' 
Rauschenberger's avatar
Rauschenberger committed
817
818
819
820
#' @param map
#' list with names "genes", "exons", and "snps"
#' (output from \code{map.genes}, \code{map.exons}, and \code{map.snps})
#' 
Rauschenberger's avatar
Rauschenberger committed
821
822
823
824
825
826
827
828
829
830
831
#' @param rho
#' correlation\strong{:}
#' numeric vector with values between \eqn{0} and \eqn{1}
#' 
#' @details
#' Automatic adjustment of the number of permutations
#' such that Bonferroni-significant p-values are possible.
#' 
#' @examples
#' NA
#' 
Rauschenberger's avatar
Rauschenberger committed
832
833
test.multiple <- function(Y,X,map,rho=c(0,0.5,1)){
    
Rauschenberger's avatar
Rauschenberger committed
834
835
836
    p <- nrow(map$genes)
    
    # permutations
Rauschenberger's avatar
Rauschenberger committed
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
    if(FALSE){
        min <- 5
        max <- p/0.05+1
        limit <- ceiling(0.05*max/p)
        base <- 1.5 # adjust sequence
        from <- log(min,base=base)
        to <- log(max,base=base)
        steps <- c(min,diff(unique(round(base^(seq(from=from,to=to,length.out=20))))))
    }
    
    if(TRUE){
        max <- p/0.05+1
        limit <- ceiling(0.05*max/p)
        steps <- diff(limit^seq(from=1,to=log(max)/log(limit),length.out=pmin(p,20)))
        steps <- c(limit,round(steps))
        steps[length(steps)] <- max-sum(steps[-length(steps)])
    }
Rauschenberger's avatar
Rauschenberger committed
854
    
Rauschenberger's avatar
Rauschenberger committed
855
    if(max != sum(steps)){stop("Invalid combination?",call.=FALSE)}
Rauschenberger's avatar
Rauschenberger committed
856
857
858
859
860
    
    # parallel computation
    type <- ifelse(test=.Platform$OS.type=="windows",yes="PSOCK",no="FORK")
    cluster <- parallel::makeCluster(spec=8,type=type)
    parallel::clusterSetRNGStream(cl=cluster,iseed=1)
Rauschenberger's avatar
Rauschenberger committed
861
    parallel::clusterExport(cl=cluster,varlist=c("Y","X","map","limit","steps","rho"),envir=environment())
Rauschenberger's avatar
Rauschenberger committed
862
    start <- Sys.time()
Rauschenberger's avatar
Rauschenberger committed
863
    pvalue <- parallel::parLapply(cl=cluster,X=seq_len(p),fun=function(i) spliceQTL::test.single(Y=Y,X=X,map=map,i=i,limit=limit,steps=steps,rho=rho))
Rauschenberger's avatar
Rauschenberger committed
864
865
866
867
868
    end <- Sys.time()
    parallel::stopCluster(cluster)
    rm(cluster)
    
    # tyding up
Rauschenberger's avatar
Rauschenberger committed
869
    pvalue <- do.call(what=rbind,args=pvalue)
Rauschenberger's avatar
Rauschenberger committed
870
    colnames(pvalue) <- paste0("rho=",rho)
Rauschenberger's avatar
Rauschenberger committed
871
872
    rownames(pvalue) <- map$genes$gene_id
    
Rauschenberger's avatar
Rauschenberger committed
873
    return(pvalue)
Rauschenberger's avatar
Rauschenberger committed
874
875
876
877
}



Rauschenberger's avatar
Rauschenberger committed
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
#--- spliceQTL test functions --------------------------------------------------

# Function: G2.multin
# This is to compute the G2 test statistic under the assumption that the response follows a multinomial distribution
### Input 
### dep data and indep data with samples on the rows and genes on the columns
### grouping: Either a logical value = F or a matrix with a single column and same number of rows as samples. 
###         Column name should be defined.
###         Contains clinical information of the samples. 
###         Should have two groups only. 
### nperm : number of permutations 
### rho: the null correlation between SNPs
### mu: the null correlation between observations corresponding to different exons and different individuals

### Output
### A list containing G2 p.values and G2 test statistics

### Example : G2T = G2(dep.data = cgh, indep.data = expr, grouping=F, stand=TRUE, nperm=1000)
### G2 p.values : G2T$G2p
### G2 TS : G2T$$Sg

Rauschenberger's avatar
Rauschenberger committed
899
G2.multin <- function(dep.data,indep.data,stand=TRUE,nperm=100,grouping=F,rho=0,mu=0){
Rauschenberger's avatar
Rauschenberger committed
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
    
    nperm = nperm
    ## check for the number of samples in dep and indep data
    
    
    if (nrow(dep.data)!=nrow(indep.data)){
        cat("number of samples not same in dep and indep data","\n")
    }
    
    if(any(abs(rho)>1)){
        cat("correlations rho larger than abs(1) are not allowed")
    }
    
    nresponses <- ncol(dep.data)
    ncovariates <- ncol(indep.data)
    ### centering and standardizing the data are not done in this case
    
    #  dep.data = scale(dep.data,center=T,scale=stand)
    #  indep.data = scale(indep.data,center=T,scale=stand)
    
    #### No  grouping of the samples.
    
    ## Calculate U=(I-H)Y and UU', where Y has observations on rows; also tau.mat=X*W.rho*X', 
    ##   where X has observations on rows and variables on columns
    ##  and W.rho = I + rho*(J-I), a square matrix with as many rows as columns in X
    ## NOTE: this formulation uses X with n obs on the rows and m covariates no the columns, so it is the transpose of the first calculations
    nsamples <- nrow(dep.data)
    n.persample <- rowSums(dep.data)
    n.all <- sum(dep.data)
    H <- (1/n.all)*matrix( rep(n.persample,each=nsamples),nrow=nsamples,byrow=T)
    U <- (diag(rep(1,nsamples)) - H) %*% dep.data
    ## Now we may have a vector of values for rho - so we define tau.mat as an array, with the 3rd index corresponding to the value of rho
    tau.mat <- array(0,dim=c(nsamples,nsamples,length(rho)))
    for(xk in 1:length(rho))  
    {  
        if (rho[xk]==0) { tau.mat[,,xk] <- tcrossprod(indep.data) } 
        else { w.rho <- diag(rep(1,ncovariates)) + rho[xk]*(tcrossprod(rep(1,ncovariates)) -diag(rep(1,ncovariates))  )
        tau.mat[,,xk] <- indep.data %*% w.rho %*% t(indep.data)}
        
    }
    ######################################
    ### NOTES ARMIN START ################
    # all(X %*% t(X) == tau.mat[,,1]) # rho = 0 -> TRUE
    # all(X %*% (t(X) %*% X) %*% t(X) == tau.mat[,,1]) # rho = 1
    # plot(as.numeric(X %*% (t(X) %*% X) %*% t(X)),as.numeric(tau.mat[,,1]))
    ### NOTES ARMIN END ##################
    ######################################
    samp_names = 1:nsamples ## this was rownames(indep.data), but I now do this so that rownames do not have to be added to the array tau.mat
    Sg = get.g2stat.multin(U,mu=mu,rho=rho,tau.mat)
    ### now we will have a vector as result, with one value per combination of values of rho and mu
    #
    ### G2 
    ### Permutations
    # When using permutations: only the rows of tau.mat are permuted
    # To check how the permutations can be efficiently applied, see tests_permutation_g2_multin.R
    
    
    perm_samp = matrix(0, nrow=nrow(indep.data), ncol=nperm)   ## generate the permutation matrix
    for(i in 1:ncol(perm_samp)){
        perm_samp[,i] = samp_names[sample(1:length(samp_names),length(samp_names))]
    }
    
    ## permutation starts - recompute tau.mat  (or recompute U each time)
    for (perm in 1:nperm){
        tau.mat.perm = tau.mat[perm_samp[,perm],,,drop=FALSE]          # permute rows
        tau.mat.perm = tau.mat.perm[,perm_samp[,perm],,drop=FALSE]     # permute columns
        
Rauschenberger's avatar
Rauschenberger committed
967
        Sg = c(Sg,spliceQTL:::get.g2stat.multin(U, mu=mu,rho=rho,tau.mat.perm) )
Rauschenberger's avatar
Rauschenberger committed
968
969
970
971
972
973
974
975
976
977
978
979
    }
    
    
    ########################################################################
    
    #### G2 test statistic
    # *** recompute for a vector of values for each case - just reformat the result with as many rows as permutations + 1,
    # and as many columns as combinations of values of rho and mu
    Sg = matrix(Sg,nrow=nperm+1,ncol=length(mu)*length(rho))
    colnames(Sg) <- paste(rep("rho",ncol(Sg)),rep(1:length(rho),each=length(mu)),rep("mu",ncol(Sg)),rep(1:length(mu),length(rho)) )
    
    ### Calculte G2 pval
Rauschenberger's avatar
Rauschenberger committed
980
    G2p =  apply(Sg,2,spliceQTL:::get.pval.percol) 
Rauschenberger's avatar
Rauschenberger committed
981
982
983
984
985
986
987
988
989
990
991
992
    
    return (list(perm = perm_samp,G2p = G2p,Sg = Sg))
}

# Function: get.g2stat.multin
# Computes the G2 test statistic given two data matrices, under a multinomial distribution
# This is used internally by the G2 function
# Inputs: 
#  U = (I-H)Y, a n*K matrix where n=number obs and K=number multinomial responses possible
#  tau.mat = X' W.rho X, a n*n matrix : both square, symmetric matrices with an equal number of rows
# Output: test statistic (single value)
# 
Rauschenberger's avatar
Rauschenberger committed
993
get.g2stat.multin <- function(U, mu, rho, tau.mat){
Rauschenberger's avatar
Rauschenberger committed
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
    g2tstat <- NULL
    for(xk in 1:length(rho))
    {
        for(xj in 1:length(mu))
        {
            if(mu[xj]==0) { g2tstat <- c(g2tstat, sum( diag( tcrossprod(U) %*% tau.mat[,,xk] ) ) )
            } else {
                g2tstat <- c(g2tstat, (1-mu[xj])*sum(diag( tcrossprod(U) %*% tau.mat[,,xk] ) ) + mu[xj]*sum( t(U) %*% tau.mat[,,xk] %*% U )  )
            }
            
        }
    }
    g2tstat
}

# Function: get.pval.percol
# This function takes a vector containing the observed test stat as the first entry, followed by values generated by permutation,
# and computed the estimated p-value
# Input
# x: a vector with length nperm+1
# Output
# the pvalue computed
get.pval.percol <- function(x){
    pval = mean(x[1]<= c(Inf , x[2:length(x)]))
    pval
}