functions.R 15.6 KB
Newer Older
Armin Rauschenberger's avatar
Armin Rauschenberger committed
1

Armin Rauschenberger's avatar
Armin Rauschenberger committed
2 3 4 5
#.loss <- get(".loss",envir=asNamespace("palasso"))
#.folds <- get(".folds",envir=asNamespace("palasso"))
#.check <- get(".check",envir=asNamespace("cornet"))

Armin Rauschenberger's avatar
Armin Rauschenberger committed
6
#--- Main function -------------------------------------------------------------
Armin Rauschenberger's avatar
Armin Rauschenberger committed
7

Armin Rauschenberger's avatar
Armin Rauschenberger committed
8
#' @export
Armin Rauschenberger's avatar
Armin Rauschenberger committed
9
#' @aliases joinet-package
Armin Rauschenberger's avatar
Armin Rauschenberger committed
10
#' @title
Armin Rauschenberger's avatar
Armin Rauschenberger committed
11
#' Multivariate Elastic Net Regression
Armin Rauschenberger's avatar
Armin Rauschenberger committed
12 13
#' 
#' @description
Armin Rauschenberger's avatar
Armin Rauschenberger committed
14 15 16 17 18 19 20
#' Implements multivariate elastic net regression.
#'  
#' @param Y
#' outputs\strong{:}
#' numeric matrix with \eqn{n} rows (samples)
#' and \eqn{q} columns (variables),
#' with positive correlation (see details)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
21 22
#' 
#' @param X
Armin Rauschenberger's avatar
Armin Rauschenberger committed
23
#' inputs\strong{:}
Armin Rauschenberger's avatar
Armin Rauschenberger committed
24
#' numeric matrix with \eqn{n} rows (samples)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
25
#' and \eqn{p} columns (variables)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
26 27 28 29 30 31 32 33 34
#'
#' @param family
#' distribution\strong{:}
#' vector of length \eqn{1} or \eqn{q} with entries
#' \code{"gaussian"}, \code{"binomial"} or \code{"poisson"}
#'
#' @param nfolds
#' number of folds
#'
Armin Rauschenberger's avatar
Armin Rauschenberger committed
35 36
#' @param foldid
#' fold identifiers\strong{:}
Armin Rauschenberger's avatar
Armin Rauschenberger committed
37
#' vector of length \eqn{n} with entries between \eqn{1} and \code{nfolds};
Armin Rauschenberger's avatar
Armin Rauschenberger committed
38
#' or \code{NULL} (balance)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
39
#' 
Armin Rauschenberger's avatar
Armin Rauschenberger committed
40
#' @param type.measure
Armin Rauschenberger's avatar
Armin Rauschenberger committed
41 42 43 44 45 46 47 48
#' loss function\strong{:}
#' vector of length \eqn{1} or \eqn{q} with entries
#' \code{"deviance"}, \code{"class"}, \code{"mse"} or \code{"mae"}
#' (see \code{\link[glmnet]{cv.glmnet}})
#'
#' @param alpha.base
#' elastic net mixing parameter for base learners\strong{:}
#' numeric between \eqn{0} (ridge) and \eqn{1} (lasso)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
49
#' 
Armin Rauschenberger's avatar
Armin Rauschenberger committed
50 51
#' @param alpha.meta
#' elastic net mixing parameter for meta learner\strong{:}
Armin Rauschenberger's avatar
Armin Rauschenberger committed
52
#' numeric between \eqn{0} (ridge) and \eqn{1} (lasso)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
53
#' 
Armin Rauschenberger's avatar
Armin Rauschenberger committed
54 55 56
#' @param ...
#' further arguments passed to \code{\link[glmnet]{glmnet}}
#' 
Armin Rauschenberger's avatar
Armin Rauschenberger committed
57
#' @references 
Armin Rauschenberger's avatar
Armin Rauschenberger committed
58 59 60 61 62 63 64
#' A Rauschenberger, E Glaab (2019)
#' "Multivariate elastic net regression through stacked generalisation"
#' \emph{Manuscript in preparation.}
#' 
#' @details
#' The \eqn{q} outcomes should be positively correlated.
#' Avoid negative correlations by changing the sign of the variable.
Armin Rauschenberger's avatar
Armin Rauschenberger committed
65
#' 
Armin Rauschenberger's avatar
Armin Rauschenberger committed
66 67 68 69 70 71
#' elastic net mixing parameters:
#' \code{alpha.base} controls input-output effects,
#' \code{alpha.meta} controls output-output effects;
#' ridge (\eqn{0}) renders dense models,
#' lasso (\eqn{1}) renders sparse models
#' 
Armin Rauschenberger's avatar
Armin Rauschenberger committed
72
#' @examples
Armin Rauschenberger's avatar
Armin Rauschenberger committed
73 74
#' n <- 30; q <- 2; p <- 20
#' Y <- matrix(rnorm(n*q),nrow=n,ncol=q)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
75
#' X <- matrix(rnorm(n*p),nrow=n,ncol=p)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
76
#' object <- joinet(Y=Y,X=X)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
77
#' 
Armin Rauschenberger's avatar
Armin Rauschenberger committed
78
joinet <- function(Y,X,family="gaussian",nfolds=10,foldid=NULL,type.measure="deviance",alpha.base=0,alpha.meta=0,...){
Armin Rauschenberger's avatar
Armin Rauschenberger committed
79
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
80
  #--- temporary ---
Armin Rauschenberger's avatar
Armin Rauschenberger committed
81
  # family <- "gaussian"; nfolds <- 10; foldid <- NULL; type.measure <- "deviance"
Armin Rauschenberger's avatar
Armin Rauschenberger committed
82
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
83
  #--- checks ---
Armin Rauschenberger's avatar
Armin Rauschenberger committed
84 85 86
  Y <- as.matrix(Y)
  X <- as.matrix(X)
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
87 88 89 90 91 92 93 94 95 96 97 98
  cornet:::.check(x=Y,type="matrix",miss=TRUE)
  if(any(stats::cor(Y,use="pairwise.complete.obs")<0,na.rm=TRUE)){warning("Negative correlation!",call.=FALSE)}
  cornet:::.check(x=X,type="matrix")
  #cornet:::.check(x=family,type="string",values=c("gaussian","binomial","poisson"))
  if(nrow(Y)!=nrow(X)){stop("Contradictory sample size.",call.=FALSE)}
  cornet:::.check(x=nfolds,type="scalar",min=3)
  cornet:::.check(x=foldid,type="vector",values=seq_len(nfolds),null=TRUE)
  cornet:::.check(x=type.measure,type="string",values=c("deviance","class","mse","mae")) # not auc (min/max confusion)
  cornet:::.check(x=alpha.base,type="scalar",min=0,max=1)
  cornet:::.check(x=alpha.meta,type="scalar",min=0,max=1)
  if(!is.null(c(list(...)$lower.limits,list(...)$upper.limits))){
    stop("Reserved arguments \"lower.limits\" and \"upper.limits\".",call.=FALSE)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
99 100
  }
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
101 102 103 104 105 106 107 108 109 110
  #--- dimensionality ---
  n <- nrow(Y)
  q <- ncol(Y)
  p <- ncol(X)
  
  #--- family ---
  if(length(family)==1){
    family <- rep(family,times=q)
  } else if(length(family)!=q){
    stop("Invalid argument family",call.=FALSE)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
111
  }
Armin Rauschenberger's avatar
Armin Rauschenberger committed
112
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
113 114 115 116
  #--- fold identifiers ---
  # provide foldid as matrix?
  if(is.null(foldid)){
    foldid <- palasso:::.folds(y=Y[,1],nfolds=nfolds) # temporary Y[,1]
Armin Rauschenberger's avatar
Armin Rauschenberger committed
117
  } else {
Armin Rauschenberger's avatar
Armin Rauschenberger committed
118
    nfolds <- length(unique(foldid))
Armin Rauschenberger's avatar
Armin Rauschenberger committed
119 120
  }
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
121 122 123 124 125 126 127 128 129 130
  #--- full fit ---
  nlambda <- numeric()
  base <- lapply(seq_len(q),function(x) list())
  for(i in seq_len(q)){
    cond <- !is.na(Y[,i])
    #if(sum(cond)==0){nlambda[i] <- 0; next}
    base[[i]]$glmnet.fit <- glmnet::glmnet(y=Y[cond,i],x=X[cond,],family=family[i],alpha=alpha.base,...) # ellipsis
    base[[i]]$lambda <- base[[i]]$glmnet.fit$lambda
    nlambda[i] <- length(base[[i]]$glmnet.fit$lambda)
  }
Armin Rauschenberger's avatar
Armin Rauschenberger committed
131
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
132 133 134 135
  #--- predictions ---
  link <- list()
  for(i in seq_len(q)){
    link[[i]] <- matrix(data=NA,nrow=n,ncol=nlambda[i])
Armin Rauschenberger's avatar
Armin Rauschenberger committed
136
  }
Armin Rauschenberger's avatar
Armin Rauschenberger committed
137 138
  
  #--- base cross-validation ---
Armin Rauschenberger's avatar
Armin Rauschenberger committed
139
  for(k in seq_len(nfolds)){
Armin Rauschenberger's avatar
Armin Rauschenberger committed
140 141
    Y0 <- Y[foldid!=k,,drop=FALSE]
    Y1 <- Y[foldid==k,,drop=FALSE]
Armin Rauschenberger's avatar
Armin Rauschenberger committed
142 143
    X0 <- X[foldid!=k,,drop=FALSE]
    X1 <- X[foldid==k,,drop=FALSE]
Armin Rauschenberger's avatar
Armin Rauschenberger committed
144 145 146 147 148 149 150
    for(i in seq_len(q)){
      cond <- !is.na(Y0[,i])
      #if(sum(cond)==0){next}
      object <- glmnet::glmnet(y=Y0[cond,i],x=X0[cond,],family=family[i],alpha=alpha.base,...) # ellipsis
      temp <- stats::predict(object=object,newx=X1,type="link",
                             s=base[[i]]$glmnet.fit$lambda)
      link[[i]][foldid==k,seq_len(ncol(temp))] <- temp
Armin Rauschenberger's avatar
Armin Rauschenberger committed
151
    }
Armin Rauschenberger's avatar
Armin Rauschenberger committed
152 153
  }
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
154 155 156 157 158 159 160 161
  #--- tune base lambdas ---
  for(i in seq_len(q)){
    fit <- .mean.function(link[[i]],family=family[i])
    cond <- !is.na(Y[,i])
    base[[i]]$cvm <- palasso:::.loss(y=Y[cond,i],fit=fit[cond,],
                                     family=family[i],type.measure=type.measure)[[1]]
    base[[i]]$lambda.min <- base[[i]]$lambda[which.min(base[[i]]$cvm)]
  }
Armin Rauschenberger's avatar
Armin Rauschenberger committed
162
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
163 164 165 166 167
  #--- predictions ---
  hat <- matrix(NA,nrow=n,ncol=q)
  for(i in seq_len(q)){
    hat[,i] <- link[[i]][,base[[i]]$lambda==base[[i]]$lambda.min]
  }
Armin Rauschenberger's avatar
Armin Rauschenberger committed
168
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
169 170 171 172 173 174 175 176 177 178 179 180 181
  #--- meta cross-validation ---
  meta <- list()
  for(i in seq_len(q)){
    cond <- !is.na(Y[,i])
    meta[[i]] <- glmnet::cv.glmnet(y=Y[cond,i],x=hat[cond,],
                                   lower.limits=0, # important: 0
                                   upper.limits=Inf, # important: Inf
                                   foldid=foldid[cond],
                                   family=family[i],
                                   type.measure=type.measure,
                                   intercept=TRUE, # with intercept
                                   alpha=alpha.meta,...) # ellipsis
    # consider trying different alpha.meta and selecting best one
Armin Rauschenberger's avatar
Armin Rauschenberger committed
182 183
  }
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
184
  #--- return ---
Armin Rauschenberger's avatar
Armin Rauschenberger committed
185 186 187
  names(base) <- names(meta) <- paste0("y",seq_len(q))
  info <- data.frame(q=q,p=p,family=family,type.measure=type.measure)
  list <- list(base=base,meta=meta,info=info)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
188
  class(list) <- "joinet"
Armin Rauschenberger's avatar
Armin Rauschenberger committed
189
  return(list)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
190 191
}

Armin Rauschenberger's avatar
Armin Rauschenberger committed
192 193 194 195 196 197 198 199 200 201 202
.mean.function <- function(x,family){
  if(family=="gaussian"){
    return(x)
  } else if(family=="binomial"){
    return(1/(1+exp(-x)))
  } else if(family=="poisson"){
    return(exp(x))
  } else {
    stop("Family not implemented.",call.=FALSE)
  }
}
Armin Rauschenberger's avatar
Armin Rauschenberger committed
203

Armin Rauschenberger's avatar
Armin Rauschenberger committed
204 205 206 207
.link.function <- function(x,family){
  if(family=="gaussian"){
    return(x)
  } else if(family=="binomial"){
Armin Rauschenberger's avatar
Armin Rauschenberger committed
208 209
    if(any(x<0|x>1)){stop("Invalid!",call.=FALSE)}
    return(log(x/(1-x)))
Armin Rauschenberger's avatar
Armin Rauschenberger committed
210
  } else if(family=="poisson"){
Armin Rauschenberger's avatar
Armin Rauschenberger committed
211
    if(any(x<0)){stop("Invalid!",call.=FALSE)}
Armin Rauschenberger's avatar
Armin Rauschenberger committed
212 213 214 215
    return(log(x))
  } else {
    stop("Family not implemented.",call.=FALSE)
  }
Armin Rauschenberger's avatar
Armin Rauschenberger committed
216 217
}

Armin Rauschenberger's avatar
Armin Rauschenberger committed
218
#--- Methods for class "joinet" -----------------------------------------------
Armin Rauschenberger's avatar
Armin Rauschenberger committed
219

Armin Rauschenberger's avatar
Armin Rauschenberger committed
220 221
#' @export
#' @title
Armin Rauschenberger's avatar
Armin Rauschenberger committed
222
#' Make Predictions
Armin Rauschenberger's avatar
Armin Rauschenberger committed
223 224
#'
#' @description
Armin Rauschenberger's avatar
Armin Rauschenberger committed
225
#' Predicts outcome from features with stacked model.
Armin Rauschenberger's avatar
Armin Rauschenberger committed
226
#' 
Armin Rauschenberger's avatar
Armin Rauschenberger committed
227
#' @param object
Armin Rauschenberger's avatar
Armin Rauschenberger committed
228
#' \link[joinet]{joinet} object
Armin Rauschenberger's avatar
Armin Rauschenberger committed
229
#' 
Armin Rauschenberger's avatar
Armin Rauschenberger committed
230 231 232 233
#' @param newx
#' covariates\strong{:}
#' numeric matrix with \eqn{n} rows (samples)
#' and \eqn{p} columns (variables)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
234
#' 
Armin Rauschenberger's avatar
Armin Rauschenberger committed
235 236
#' @param type
#' character "link" or "response"
Armin Rauschenberger's avatar
Armin Rauschenberger committed
237 238
#' 
#' @param ...
Armin Rauschenberger's avatar
Armin Rauschenberger committed
239
#' further arguments (not applicable)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
240
#' 
Armin Rauschenberger's avatar
Armin Rauschenberger committed
241
#' @examples
Armin Rauschenberger's avatar
Armin Rauschenberger committed
242
#' n <- 30; q <- 2; p <- 20
Armin Rauschenberger's avatar
Armin Rauschenberger committed
243
#' #Y <- matrix(rnorm(n*q),nrow=n,ncol=q)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
244
#' Y <- matrix(rbinom(n=n*q,size=1,prob=0.5),nrow=n,ncol=q)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
245
#' #Y <- matrix(rpois(n=n*q,lambda=4),nrow=n,ncol=q)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
246
#' X <- matrix(rnorm(n*p),nrow=n,ncol=p)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
247
#' object <- joinet(Y=Y,X=X,family="binomial")
Armin Rauschenberger's avatar
Armin Rauschenberger committed
248
#' y_hat <- predict(object,newx=X)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
249
#' 
Armin Rauschenberger's avatar
Armin Rauschenberger committed
250
predict.joinet <- function(object,newx,type="response",...){
Armin Rauschenberger's avatar
Armin Rauschenberger committed
251
  if(length(list(...))!=0){warning("Ignoring argument.",call.=FALSE)}
Armin Rauschenberger's avatar
Armin Rauschenberger committed
252
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
253
  x <- object; rm(object)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
254
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
255
  newx <- as.matrix(newx)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
256
  cornet:::.check(x=newx,type="matrix")
Armin Rauschenberger's avatar
Armin Rauschenberger committed
257
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
258 259 260
  q <- length(x$base)
  n <- nrow(newx)
  base <- meta <- matrix(NA,nrow=n,ncol=q)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
261
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
262 263 264 265 266 267
  # base learners
  for(i in seq_len(q)){
    #base[,i] <- as.numeric(stats::predict(object=x$base[[i]]$glmnet.fit,newx=newx,s=x$base[[i]]$lambda.min,type="link"))
    base[,i] <- as.numeric(glmnet::predict.cv.glmnet(object=x$base[[i]],newx=newx,s="lambda.min",type="link"))
    # check whether fine for "binomial" family
  }
Armin Rauschenberger's avatar
Armin Rauschenberger committed
268
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
269 270 271 272 273
  # meta learners
  for(i in seq_len(q)){
    meta[,i] <- as.numeric(stats::predict(object=x$meta[[i]],
                                          newx=base,s="lambda.min",type="link"))
  }
Armin Rauschenberger's avatar
Armin Rauschenberger committed
274
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
275
  list <- list(base=base,meta=meta)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
276
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
277 278 279 280 281 282 283
  if(type=="response"){
    for(i in seq_len(q)){
      base[,i] <- .mean.function(x=base[,i],family=x$info$family[i])
      meta[,i] <- .mean.function(x=meta[,i],family=x$info$family[i])
    }
  } else if(type!="link"){
    stop("Invalid type.",call.=FALSE)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
284 285
  }
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
286 287 288
  list <- list(base=base,meta=meta)
  return(list)
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
289 290
}

Armin Rauschenberger's avatar
Armin Rauschenberger committed
291 292
#' @export
#' @title
Armin Rauschenberger's avatar
Armin Rauschenberger committed
293
#' Extract Coefficients
Armin Rauschenberger's avatar
Armin Rauschenberger committed
294 295
#'
#' @description
Armin Rauschenberger's avatar
Armin Rauschenberger committed
296
#' Extracts pooled coefficients.
Armin Rauschenberger's avatar
Armin Rauschenberger committed
297 298
#' (The meta learners linearly combines
#' the coefficients from the base learners.)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
299
#' 
Armin Rauschenberger's avatar
Armin Rauschenberger committed
300
#' @param object
Armin Rauschenberger's avatar
Armin Rauschenberger committed
301
#' \link[joinet]{joinet} object
Armin Rauschenberger's avatar
Armin Rauschenberger committed
302 303
#' 
#' @param ...
Armin Rauschenberger's avatar
Armin Rauschenberger committed
304
#' further arguments (not applicable)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
305 306
#' 
#' @examples
Armin Rauschenberger's avatar
Armin Rauschenberger committed
307 308
#' n <- 30; q <- 2; p <- 20
#' Y <- matrix(rnorm(n*q),nrow=n,ncol=q)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
309
#' X <- matrix(rnorm(n*p),nrow=n,ncol=p)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
310
#' object <- joinet(Y=Y,X=X)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
311 312
#' coef <- coef(object)
#' 
Armin Rauschenberger's avatar
Armin Rauschenberger committed
313
coef.joinet <- function(object,...){
Armin Rauschenberger's avatar
Armin Rauschenberger committed
314 315 316 317 318 319 320 321 322 323 324
  if(length(list(...))!=0){warning("Ignoring argument.",call.=FALSE)}
  
  # base coefficients
  base <- list()
  coef <- sapply(object$base,function(x) glmnet::coef.glmnet(object=x$glmnet.fit,s=x$lambda.min))
  base$alpha <- sapply(coef,function(x) x[1,])
  base$beta <- sapply(coef,function(x) x[-1,])
  names(base$alpha) <- colnames(base$beta) <- names(object$base)
  
  # meta coefficients
  meta <- list()
Armin Rauschenberger's avatar
Armin Rauschenberger committed
325
  weights <- weights.joinet(object)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
  meta$alpha <- weights[1,]
  meta$beta <- weights[-1,]
  
  # pooled coefficients
  pool <- list()
  pool$alpha <- meta$alpha + base$alpha %*% meta$beta
  pool$beta <- base$beta %*% meta$beta
  
  # q <- unique(object$info$q)
  # p <- unique(object$info$p)
  # pool$alpha <- rep(NA,times=q)
  # for(i in seq_len(q)){
  #   pool$alpha[i] <-  meta$alpha[i] + sum(meta$beta[,i] * base$alpha)
  # }
  # pool$beta <- matrix(NA,nrow=p,ncol=q)
  # for(i in seq_len(p)){
  #   for(j in seq_len(q)){
  #     pool$beta[i,j] <-  sum(meta$beta[,j] * base$beta[i,])
  #   }
  # }
Armin Rauschenberger's avatar
Armin Rauschenberger committed
346
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
347
  return(pool)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
348 349
}

Armin Rauschenberger's avatar
Armin Rauschenberger committed
350 351
#' @export
#' @importFrom stats weights
Armin Rauschenberger's avatar
Armin Rauschenberger committed
352
#' @title
Armin Rauschenberger's avatar
Armin Rauschenberger committed
353
#' Extract Weights
Armin Rauschenberger's avatar
Armin Rauschenberger committed
354 355
#'
#' @description
Armin Rauschenberger's avatar
Armin Rauschenberger committed
356 357
#' Extracts coefficients from the meta learner,
#' i.e. the weights for the base learners.
Armin Rauschenberger's avatar
Armin Rauschenberger committed
358
#' 
Armin Rauschenberger's avatar
Armin Rauschenberger committed
359
#' @param object
Armin Rauschenberger's avatar
Armin Rauschenberger committed
360
#' \link[joinet]{joinet} object
Armin Rauschenberger's avatar
Armin Rauschenberger committed
361
#' 
Armin Rauschenberger's avatar
Armin Rauschenberger committed
362 363
#' @param ...
#' further arguments (not applicable)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
364
#' 
Armin Rauschenberger's avatar
Armin Rauschenberger committed
365 366 367 368
#' @examples
#' n <- 30; q <- 2; p <- 20
#' Y <- matrix(rnorm(n*q),nrow=n,ncol=q)
#' X <- matrix(rnorm(n*p),nrow=n,ncol=p)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
369
#' object <- joinet(Y=Y,X=X)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
370 371
#' weights(object)
#' 
Armin Rauschenberger's avatar
Armin Rauschenberger committed
372
weights.joinet <- function(object,...){
Armin Rauschenberger's avatar
Armin Rauschenberger committed
373 374 375 376 377 378 379
  if(length(list(...))!=0){warning("Ignoring argument.",call.=FALSE)}
  x <- object$meta
  coef <- lapply(object$meta,function(x) glmnet::coef.glmnet(object=x,s=x$lambda.min))
  coef <- do.call(what="cbind",args=coef)
  coef <- as.matrix(coef)
  colnames(coef) <- names(object$meta)
  return(coef)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
380 381
}

Armin Rauschenberger's avatar
Armin Rauschenberger committed
382 383
print.joinet <- function(x,...){
  cat(paste0("joinet object"),"\n")
Armin Rauschenberger's avatar
Armin Rauschenberger committed
384 385 386 387
}

#--- Manuscript functions ------------------------------------------------------

Armin Rauschenberger's avatar
Armin Rauschenberger committed
388
#' @export
Armin Rauschenberger's avatar
Armin Rauschenberger committed
389
#' @title
Armin Rauschenberger's avatar
Armin Rauschenberger committed
390
#' Model comparison
Armin Rauschenberger's avatar
Armin Rauschenberger committed
391 392
#'
#' @description
Armin Rauschenberger's avatar
Armin Rauschenberger committed
393
#' Compares univariate and multivariate regression
Armin Rauschenberger's avatar
Armin Rauschenberger committed
394
#' 
Armin Rauschenberger's avatar
Armin Rauschenberger committed
395
#' @inheritParams joinet
Armin Rauschenberger's avatar
Armin Rauschenberger committed
396
#' 
Armin Rauschenberger's avatar
Armin Rauschenberger committed
397 398
#' @param nfolds.ext
#' number of external folds
Armin Rauschenberger's avatar
Armin Rauschenberger committed
399
#' 
Armin Rauschenberger's avatar
Armin Rauschenberger committed
400 401
#' @param nfolds.int
#' number of internal folds
Armin Rauschenberger's avatar
Armin Rauschenberger committed
402
#' 
Armin Rauschenberger's avatar
Armin Rauschenberger committed
403 404 405 406 407
#' @param foldid.ext
#' external fold identifiers\strong{:}
#' vector of length \eqn{n} with entries
#' between \eqn{1} and \code{nfolds.ext};
#' or \code{NULL}
Armin Rauschenberger's avatar
Armin Rauschenberger committed
408
#' 
Armin Rauschenberger's avatar
Armin Rauschenberger committed
409 410 411 412 413
#' @param foldid.int
#' internal fold identifiers\strong{:}
#' vector of length \eqn{n} with entries
#' between \eqn{1} and \code{nfolds.int};
#' or \code{NULL}
Armin Rauschenberger's avatar
Armin Rauschenberger committed
414
#' 
Armin Rauschenberger's avatar
Armin Rauschenberger committed
415 416 417
#' @param mnorm,spls,sier,mrce
#' experimental arguments\strong{:}
#' logical (install packages \code{spls}, \code{SiER}, or \code{MRCE})
Armin Rauschenberger's avatar
Armin Rauschenberger committed
418
#' 
Armin Rauschenberger's avatar
Armin Rauschenberger committed
419 420
#' @param ...
#' further arguments passed to \code{\link[glmnet]{glmnet}} and \code{\link[glmnet]{cv.glmnet}}
Armin Rauschenberger's avatar
Armin Rauschenberger committed
421
#' 
Armin Rauschenberger's avatar
Armin Rauschenberger committed
422
#' @examples
Armin Rauschenberger's avatar
Armin Rauschenberger committed
423 424 425
#' n <- 40; q <- 2; p <- 20
#' Y <- matrix(rnorm(n*q),nrow=n,ncol=q)
#' X <- matrix(rnorm(n*p),nrow=n,ncol=p)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
426
#' cv.joinet(Y=Y,X=X)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
427
#' 
Armin Rauschenberger's avatar
Armin Rauschenberger committed
428
cv.joinet <- function(Y,X,family="gaussian",nfolds.ext=5,nfolds.int=10,foldid.ext=NULL,foldid.int=NULL,type.measure="deviance",alpha.base=1,alpha.meta=0,mnorm=FALSE,spls=FALSE,sier=FALSE,mrce=FALSE,...){
Armin Rauschenberger's avatar
Armin Rauschenberger committed
429
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
430 431 432
  n <- nrow(Y)
  q <- ncol(Y)
  p <- ncol(X)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
433
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
434 435 436 437 438
  #--- fold identifiers ---
  if(is.null(foldid.ext)){
    foldid.ext <- palasso:::.folds(y=Y[,1],nfolds=nfolds.ext) # temporary Y[,1]
  } else {
    nfolds.ext <- length(unique(foldid.ext))
Armin Rauschenberger's avatar
Armin Rauschenberger committed
439 440
  }
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
441 442 443 444 445
  #--- family ---
  if(length(family)==1){
    family <- rep(family,times=q)
  } else if(length(family)!=q){
    stop("Invalid argument family",call.=FALSE)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
446 447
  }
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
448
  #--- cross-validated predictions ---
Armin Rauschenberger's avatar
Armin Rauschenberger committed
449
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
450
  models <- c("base","meta","mnorm"[mnorm],"spls"[spls],"sier"[sier],"mrce"[mrce],"none")
Armin Rauschenberger's avatar
Armin Rauschenberger committed
451 452
  pred <- lapply(X=models,function(x) matrix(data=NA,nrow=n,ncol=q))
  names(pred) <- models
Armin Rauschenberger's avatar
Armin Rauschenberger committed
453
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
454 455 456 457 458 459 460 461 462 463 464 465 466
  for(i in seq_len(nfolds.ext)){
    
    Y0 <- Y[foldid.ext!=i,,drop=FALSE]
    Y1 <- Y[foldid.ext==i,,drop=FALSE]
    X0 <- X[foldid.ext!=i,,drop=FALSE]
    X1 <- X[foldid.ext==i,,drop=FALSE]
    if(is.null(foldid.int)){
      foldid <- palasso:::.folds(y=Y0[,1],nfolds=nfolds.int) # temporary Y0[,1]
    } else {
      foldid <- foldid.int[foldid.ext!=i]
    }
    
    # base and meta learners
Armin Rauschenberger's avatar
Armin Rauschenberger committed
467 468
    fit <- joinet(Y=Y0,X=X0,family=family,type.measure=type.measure,alpha.base=alpha.base,alpha.meta=alpha.meta,foldid=foldid) # add ,...
    temp <- predict.joinet(fit,newx=X1)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
469 470 471 472 473 474 475 476 477
    pred$base[foldid.ext==i,] <- temp$base
    pred$meta[foldid.ext==i,] <- temp$meta
    
    # other learners
    cond <- apply(X0,2,function(x) stats::sd(x)!=0)
    x0 <- X0[,cond]
    x1 <- X1[,cond]
    y0 <- apply(X=Y0,MARGIN=2,FUN=function(x) ifelse(is.na(x),sample(x[!is.na(x)],size=1),x))
    all(Y0==y0,na.rm=TRUE)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
478
    
Armin Rauschenberger's avatar
Armin Rauschenberger committed
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
    if(mnorm){
      net <- glmnet::cv.glmnet(x=X0,y=y0,family="mgaussian",foldid=foldid,...) # ellipsis
      pred$mnorm[foldid.ext==i,] <- glmnet::predict.cv.glmnet(object=net,newx=X1,s="lambda.min",type="response")
    }
    if(spls){
      cv.spls <- spls::cv.spls(x=x0,y=y0,fold=nfolds.int,K=seq_len(10),
                               eta=seq(from=0.1,to=0.9,by=0.1),scale.x=FALSE,plot.it=FALSE)
      mspls <- spls::spls(x=x0,y=y0,K=cv.spls$K.opt,cv.spls$eta.opt,scale.x=FALSE)
      pred$spls[foldid.ext==i,] <- spls::predict.spls(object=mspls,newx=x1,type="fit")
    }
    if(sier){
      object <- SiER::cv.SiER(X=X0,Y=y0,K.cv=10)
      pred$sier[foldid.ext==i,] <- SiER::pred.SiER(cv.fit=object,X.new=X1)
    }
    if(mrce){
Armin Rauschenberger's avatar
Armin Rauschenberger committed
494
      # bug?
Armin Rauschenberger's avatar
Armin Rauschenberger committed
495 496 497 498 499 500 501 502 503
      lam1 <- rev(10^seq(from=-2,to=0,by=0.5))
      lam2 <- rev(10^seq(from=-2,to=0,by=0.5))
      object <- MRCE::mrce(X=x0,Y=y0,lam1.vec=lam1,lam2.vec=lam2,method="cv")
      pred$mrce[foldid.ext==i,] <- object$muhat + x1 %*% object$Bhat
    }
    
    pred$none[foldid.ext==i,] <- matrix(colMeans(Y0,na.rm=TRUE),nrow=sum(foldid.ext==i),ncol=ncol(Y0),byrow=TRUE)
    
  }
Armin Rauschenberger's avatar
Armin Rauschenberger committed
504
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
505 506 507 508 509 510 511 512 513
  #--- cross-validated loss ---
  loss <- matrix(data=NA,nrow=length(models),ncol=ncol(Y),
                 dimnames=list(models,colnames(Y)))
  for(j in models){
    for(i in seq_len(q)){
      cond <- !is.na(Y[,i])
      loss[j,i] <- palasso:::.loss(y=Y[cond,i],fit=pred[[j]][cond,i],family=family[i],type.measure=type.measure)[[1]]
    }
  }
Armin Rauschenberger's avatar
Armin Rauschenberger committed
514
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
515
  #--- model refit ---
Armin Rauschenberger's avatar
Armin Rauschenberger committed
516
  #fit <- joinet(Y=Y,X=X,family=family,type.measure=type.measure,alpha.base=alpha.base,alpha.meta=alpha.meta) # add ,...
Armin Rauschenberger's avatar
Armin Rauschenberger committed
517
  #list <- list(loss=loss,fit=fit)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
518
  
Armin Rauschenberger's avatar
Armin Rauschenberger committed
519
  return(loss)
Armin Rauschenberger's avatar
Armin Rauschenberger committed
520
}